14.02.2019

Взлётная скорость самолёта. Взлет с боковым ветром. Взлет самолёта с использованием неполной взлетной тяги двигателя



7. Устойчивость и управляемость
8. Система автоматического управления
9. Полет самолёта при несимметричной тяге
10. Недостатки самолёта

Траектория взлета простирается от точки старта до набора высоты 1500 футов, или окончания уборки закрылков с достижением скорости V FTO , какая из этих точек выше.

Максимальный взлетный вес самолёта ограничивается следующими условиями:

  1. Максимально-допустимой энергией, поглощаемой тормозами, в случае прерванного взлета.
  2. Минимально-допустимым градиентом набора высоты.
  3. Максимально-допустимым временем работы двигателя на взлетном режиме, в случае продолженного взлета для набора необходимой высоты и разгона для уборки механизации.
  4. Располагаемой дистанцией взлета.
  5. Максимально-допустимой сертифицированной взлетной массой.
  6. Минимально-допустимой высотой пролета над препятствиями.
  7. Максимально-допустимой путевой скоростью отрыва от ВПП. Обычно 225 узлов, но возможно 195 узлов. Эта скорость написана прямо на пневматиках.
  8. Минимальной эволютивной скоростью разбега; V MCG

Минимально-допустимый градиент набора высоты

В соответствии с нормами летной годности FAR 25 градиент нормируется по трем сегментам:

  1. С выпущенными шасси, закрылки во взлетном положении — градиент должен быть более нуля.
  2. После уборки шасси, закрылки во взлетном положении — минимальный градиент 2,4 %. Взлетный вес ограничивается, как правило, выполнением данного требования.
  3. В крейсерской конфигурации — минимальный градиент 1,2 %.

Дистанция взлета

В располагаемую дистанцию взлета входит рабочая длина взлетно-посадочной полосы с учетом концевой полосы безопасности и полосы, свободной от препятствий.

Располагаемая дистанция взлета не может быть меньше любой из трёх дистанций:

  1. Дистанции продолженного взлета от начала движения до набора высоты условного препятствия 35 футов и безопасной скорости V 2 при отказе двигателя на скорости принятия решения V 1 .
  2. Дистанции прерванного взлета, при отказе двигателя на V EF . Где V EF — скорость в момент отказа двигателя, при этом предполагается, что пилот распознает отказ и выполнит первое действие по прекращению взлета на скорости принятия решения V 1 . На сухой ВПП не учитывается влияние реверса работающего двигателя.
  3. Дистанции взлета с нормально работающими двигателями от начала движения до набора высоты условного препятствия 35 футов, умноженной на коэффициент 1,15.

В располагаемую дистанцию взлета входят рабочая длина ВПП и длина концевой полосы безопасности.

Длину полосы, свободной от препятствий, разрешается прибавлять к располагаемой дистанции взлета, но не более половины воздушного участка траектории взлета от точки отрыва до набора высоты 35 футов и безопасной скорости.

Если мы прибавляем к длине ВПП длину КБП, то мы можем увеличить взлетный вес, при этом скорость принятия решения увеличится, для обеспечения набора высоты 35 футов над концом КБП.

Если мы используем полосу свободную от препятствий, то мы также можем увеличить взлетный вес, но при этом скорость принятия решения уменьшится, поскольку нам необходимо обеспечить остановку самолёта в случае прерванного взлета с увеличенным весом в пределах рабочей длины ВПП. В случае продолженного взлета в этом случае самолёт наберет высоту 35 футов за пределами ВПП, но над полосой, свободной от препятствий.

Минимально-допустимая высота пролета над препятствиями

Минимально-допустимая высота пролета над препятствиями по «чистой» траектории взлета равна 35 футов.

«Чистая» — это траектория взлета, градиент набора высоты которой уменьшен на 0,8 % по сравнению с реальным градиентом для данных условий.

При построении схемы стандартного выхода из района аэродрома после взлета закладывается минимальный градиент «чистой» траектории 2,5 %. Таким образом, чтобы выполнить схему выхода, максимальный взлетный вес самолёта должен обеспечить градиент набора высоты 2,5 +0,8 = 3,3 %. Некоторые схемы выхода могут требовать более высокого градиента, что требует уменьшения взлетного веса.

Минимальная эволютивная скорость разбега

Это земная индикаторная скорость в ходе разбега, при которой в случае внезапного отказа критического двигателя, возможно сохранять управление самолётом, используя только руль направления и сохранять поперечное управление в такой степени, чтобы удерживать крыло в близком к горизонтальному положении для обеспечения безопасного продолжения взлета. V MCG не зависит от состояния ВПП, поскольку при её определении не учитывается реакция ВПП на самолёт.

В таблице представлена V MCG в узлах для взлета с двигателями с тягой 22К. Где Actual OAT- температура наружного воздуха, а Press ALT- превышение аэродрома в футах. Приписка снизу касается взлета с выключенными отборами воздуха от двигателей, поскольку тяга двигателей возрастает, то возрастает и V MCG .

Actual OAT Press ALT
C 0 2000 4000 6000 8000
40 111 107 103 99 94
30 116 111 107 103 99
20 116 113 111 107 102
10 116 113 111 108 104

For A/C OFF increase V1 by 2 knots.

Взлет с отказавшим двигателем может быть продолжен лишь в случае, если отказ двигателя произойдет при скорости не менее, чем V MCG .

Взлет с мокрой полосы

При расчёте максимально-допустимой взлетной массы, в случае продолженного взлета, используется уменьшенная высота условного препятствия 15 футов, вместо 35 футов для сухой ВПП. В связи с этим нельзя в расчёт взлетной дистанции включать полосу, свободную от препятствий.

При расчётах прерванного взлета разрешается учитывать эффект реверса двигателей.

Взлет с полосы, покрытой слоем осадков

На взлет с ВПП, покрытой слоем осадков, накладывается ряд ограничений:

  1. Запрещается использовать технологию увеличения градиента набора высоты.
  2. Запрещается уменьшать режим работы двигателя на взлете, используя технологию имитации температуры наружного воздуха.
  3. Антиюз должен быть включен и исправен.

Взлет самолёта с использованием неполной взлетной тяги двигателя

В условиях, когда максимально-допустимый взлетный вес значительно превышает фактический, рекомендуется выполнять взлет с неполной взлетной тягой двигателей. Это позволяет повысить надёжность работы двигателей и снизить расходы по эксплуатации двигателей, создает меньше шума, способствует комфорту пассажиров за счёт более плавного изменения параметров полета, особенно если вскоре после взлета придется переходить в горизонтальный полет. Особенно это желательно делать при взлетах в жаркую погоду, поскольку резко уменьшается вероятность превышения максимально допустимой температуры газов за турбиной в процессе разгона на взлете.

Существует два способа уменьшения тяги:

  • ступенчатый перевод двигателя на нижнюю ступень тяги. CFM 56-3 имеет 4 модификации: В4, В1, В2 и С1 имеющие максимальную статическую тягу соответственно 18,5; 20; 22 и 23,5 тысяч фунтов. Так, если на модификации С1 установить Derate 1, FMC будет строить расчёты на максимальную тягу 22 тысячи фунтов, а если Derate 2 — то 20 тысяч.
  • имитация температуры наружного воздуха.

Общеизвестно, что с увеличением температуры воздуха максимально-допустимая взлетная масса уменьшается. Это связано в первую очередь с уменьшением располагаемой тяги двигателей. Как и в любой тепловой машине, в реактивном двигателе мощность напрямую зависит от количества тепла переданного рабочему телу. Верхний предел температуры газов ограничен прочностью турбины, поэтому при повышении температуры воздуха, входящего в двигатель, разница температур падает.

Кроме этого, при увеличении температуры воздуха падает его плотность, что приводит к увеличению скоростей на взлете и, следовательно, уменьшению допустимого взлетного веса при неизменных параметрах аэродрома вылета.

Метод имитации температуры наружного воздуха состоит в том, чтобы задать FMC такую температуру, при которой фактический взлетный вес являлся бы максимально-допустимым.

Метод имитации температуры наружного воздуха

Применение данного метода имеет ряд ограничений. Согласно нормам, нельзя уменьшать тягу данным методом более, чем на 25 %. Использование данного метода запрещено, при:

  1. Взлете с ВПП, покрытой слоем осадков.
  2. Взлете с попутным ветром.
  3. Взлете с выключенными РМС.
  4. При неработающей FMC.
  5. При ожидаемом сдвиге ветра на взлете.
  6. При отказе антиюза

Оба метода уменьшения взлетной тяги не противоречат друг другу и их можно применять одновременно. Вместе с тем есть принципиальное отличие по их влиянию на взлетные характеристики.

При использовании Derate новый установленный максимум тяги нельзя превышать. В напоминание об этом на индикаторе оборотов N1 опустятся ограничители.

При использовании assumed temperature пилоты могут в любой момент увеличить тягу до максимальной.

Исходя из этого строится расчёт VMCG. Соответственно при использовании assumed temperature — VMCG не меняется, а при использовании Derate — уменьшается за счёт уменьшения разворачивающего момента от двигателя, выдающего меньшую тягу.

Данное свойство Derate может помочь в увеличении максимально-допустимой взлетной массы при взлетах с коротких ВПП и с ВПП, покрытых слоем осадков. Это происходит потому, что вес в данном случае ограничивается необходимостью на взлете достичь VMCG , а затем при необходимости остановиться в пределах ВПП.

Вопрос о том, какую скорость развивает самолет при взлёте, интересует многих пассажиров. Мнения непрофессионалов всегда расходятся – кто-то ошибочно предполагает, что скорость всегда одинаковая для всех видов данной авиатехники, другие правильно считают, что она различная, но не могут объяснить почему. Постараемся разобраться в этой теме.

Взлёт

Взлёт – это процесс, занимающий временную шкалу от начала движения самолёта до его полного отрыва от взлетно-посадочной полосы. Взлёт возможно только при соблюдении одного условия: подъёмная сила должна приобрести значение больше значения массы взлетающего объекта.


Виды взлёта

Различные «мешающие» факторы, которые приходится преодолевать для поднятия самолёта в воздух (погодные условия, направление ветра, ограниченная взлётная полоса, ограниченная мощность двигателя и т.д.), побудили авиаконструкторов к созданию множества способов их обхода. Усовершенствовалась не только конструкция летающих аппаратов, но и сам процесс их взлёта. Таким образом, были разработаны несколько видов взлёта:

  • С тормозов. Разгон самолёта начинается только после того, как двигатели достигнут установленного режима тяги, а до тех пор аппарат удерживается на месте при помощи тормозов;
  • Простой классический взлёт, предполагающий постепенный набор тяги двигателя во время движения самолёта по взлётной полосе;
  • Взлёт с использованием вспомогательных средств. Характерно для самолётов, несущих боевую службу на авианосцах. Ограниченная дистанция взлётной полосы компенсируется использованием трамплинов, катапультными устройствами или даже установленными на самолёт дополнительными ракетными двигателями;
  • Вертикальный взлёт. Возможен при наличии у самолёта двигателей с вертикальной тягой (пример – отечественный Як-38). Такие аппараты, аналогично вертолётам, сначала набирают высоту с места по вертикали либо при разгоне с очень малого расстояния, а затем плавно переходят в горизонтальный полёт.

Рассмотрим в качестве примера фазы взлёты реактивного самолёта Боинг 737.



Взлет Boeing 737-800

Взлёт пассажирского Boeing 737

Практически каждый гражданский реактивный самолёт поднимается в воздух по классической схеме, т.е. двигатель набирает нужную тягу непосредственно в самом процессе взлёта. Выглядит это следующим образом:

  • Движение самолёта начинается после достижения двигателем около 800 оборотов/мин. Лётчик постепенно отпускает тормоза, держа при этом ручку управления нейтрально. Разбег начинается на трёх колёсах;
  • Для начала отрыва от земли Боинг должен приобрести скорость около 180 км/ч. При достижении этого значения пилот плавно тянет ручку, что ведёт к отклонению щитков-закрылков и, как следствие, поднятию носа аппарата. Дальше самолёт разгоняется уже на двух колёсах;
  • С приподнятым носом на двух колёсах самолёт продолжает разгон до тех пор, пока скорость не достигнет 220 км/ч. При достижении этого значения самолёт отрывается от земли.

Скорость взлета других типовых самолетов

  • Airbus A380 – 269 км/ч;
  • Boeing 747 – 270 км/ч;
  • Ил 96 – 250 км/ч;
  • Ту 154М – 210 км/ч;
  • Як 40 – 180 км/ч.


Приведенной скорости не всегда достаточно для отрыва. В ситуациях, когда сильный ветер дует в направлении взлёта аппарата, требуется большая наземная скорость. Или, наоборот – при встречном ветре достаточно меньшей скорости.

По материалам techcult

Многих людей интересует скорость самолета при взлете.Некоторым это интересно, поскольку им любопытно узнать историю самолетостроения, а другим - из-за того, что скоро начнется их первый перелет. На эту тему существует большое количество мнений, причем многие из них, как всегда, ошибочны. Тем не менее, именно этот момент отрыва от земли является одним из самых важных и продолжительных процессов у любого воздушного транспорта. Более подробно эта тема будет разобрана далее.

Фаза взлета занимает все время от начала движения и до полного отрыва от поверхности полотна. Однако здесь присутствует несколько важных нюансов - итоговая сила подъема должна превышать массу поднимающегося самолета, чтобы он смог в итоге постепенно оторваться от . Причем у каждой модели воздушного транспорта свои возможности по набору скорости на полосе. Например, у пассажирских лайнеров двигатели переключаются в специальный режим, который длится пару минут, что позволяет наиболее быстро подняться. Впрочем, его редко используют вблизи от населенных пунктов, чтобы не доставать шумом местных жителей.

Типы взлета

Существует некоторое количество факторов, которые приходится постоянно учитывать пилотам при начале фазы взлета. В основном, это погодные условия, направление и сила ветра (если ветер дует прямо «в лицо», для подъема самолету придется набирать намного больше скорости, кроме того, иногда сильный ветер способен отклонить воздушное судно в сторону), ограниченность взлетной полосы и мощности двигателя. Причем есть еще огромное количество различных мелочей, которые в итоге оказывают критическое влияние на процесс. Все это заставляло авиаконструкторов вести работу по улучшению моделей летающих аппаратов.

У тяжелых транспортных лайнеров есть сразу два варианта взлета, а именно:

  1. Самолет способен осуществлять набор скорости, только после того, как двигатели выработают необходимую силу тяги. До этого момента лайнер просто стоит на тормозах.
  2. Классический взлет идет сразу после короткой остановки. В этом случае не требуется предварительного набора мощности у двигателей. Самолет просто выполняет разгон и поднимается в небо.

Другие типы авиации, в основном, военные, используют свои методы, например:

  1. Самолеты, несущие службу на авианосцах, взлетают при помощи целой системы вспомогательных средств. Применяются и катапульты, различные трамплины, в особых случаях на истребители даже устанавливают дополнительные двигатели.
  2. Вертикальный взлет используется только у тех летательных аппаратов, у которых имеется двигатель с вертикальным типом тяги. Хорошим примером служит Як-38. В этом случае самолет постепенно набирает высоту с места либо с небольшого разгона сразу переходит в горизонтальный полет.

Обычнаяскорость самолета при взлете, при которой лайнер, вроде Boing 737, отрывается от земли, составляет 220 км/ч. Тогда как другая модель под индексом 747 требует уже 270 км/ч. Иногда такой может и не хватать. Особенно ярко это выражается при сильном ветре. В подобных случаях требуется более длинная дистанция разбега.

Задумывается ли пассажир авиалайнера, перемещающийся из одной точки планеты в другую: какова была скорость самолета при взлете? Или ему достаточно ощущений: начало движения; набор скорости; отрыв. Вероятнее всего – последнее предположение. Детали – дело специалистов.
Уже давно, более века назад, человек преодолел земное притяжение и воспарил как птица. Чего было больше в этом неукротимом стремлении – подняться в воздух? Романтики полета? Или голого рационализма? А может быть, кто-то таким способом пытался подтвердить свои ученые выкладки? История об этом молчит, а факты сухо перечисляют количество катастроф и жертв, которыми обозначен путь в небо.
Самолеты. Они действительно похожи на птиц. Большие и маленькие птицы. Большая и малая авиация. Птицы хищники. Военная авиация. Перелетные птицы. Пассажирские аэробусы. Везде прослеживается аналогия.
Для того чтобы подняться в воздух, многие птицы набирают разгон на земле или на воде. Самолеты разбегаются по взлетной полосе, а гидросамолеты по водной глади. Какую скорость нужно развить от точки старта до точки отрыва? Какое усилие следует для этого приложить? Птицы руководствуются врожденным инстинктом, а человек накопленными знаниями, опытом и точным физико-математическим расчётом.
Что нужно уметь, чтобы оторвать от земли многотонную конструкцию? Что нужно знать, чтобы спроектировать и создать самолет? Все основные законы физики сплетаются в «гордиев узел», который рассекается остротой и точностью расчетов силовых и аэродинамических характеристик.
Бывает странно видеть, как неуклюжий с виду «транспортник», слегка разбежавшись, медленно, но верно поднимается над землей. И, напротив, поджарый истребитель мчится и мчится по взлетной полосе и только когда уже кажется, что ему так и не хватит места, взмывает ввысь.
Что же важней при взлете – скорость, форма или вес? И где начинается взлет? В момент отрыва от земли? Или при наборе определенной высоты? И если оторваться от взлетной площадки – значит, взлететь, то самолеты вертикального взлета, вообще, на этом этапе имеют скорость близкую к нолю.
Технически, взлетом считается - движение самолета с ускорением от начала разбега до подъема на 25 метровую высоту.
В отдельных аэропортах, где интенсивность движения воздушных судов очень высока, взлет самолета начинается сразу после выруливания на взлетно-посадочную полосу, без остановки. Взлет с тормозов, предусматривает набор двигателями максимальной мощности, в статическом состоянии. После чего тормоза плавно снимаются, и самолет начинает взлетный разбег. Взлет с кратковременной остановкой – некий промежуточный вариант.
В момент разгона, отрыва и взлета, двигатели самолета работают в режиме номинальной нагрузки как механической, так и тепловой. Такой режим может быть задействован, только на короткое время.
В разгоне самолета есть одна непременная составляющая – это скорость принятия решения. То есть скорость, при которой, в случае сбоя в работе двигателей или обнаружении любой другой неисправности, возможно аварийное торможение, без катастрофических последствий. Если эта скорость преодолена, то остается только один выход – взлет с последующей глиссадой. Благо, что техническое оснащение современных самолетов позволяет поднять машину в воздух, даже в случае неисправности одного из двигателей.
Огромное значение при разгоне и взлете самолета имеет механизация крыла. Закрылки, подкрылки, интерцепторы, спойлеры и прочие элементы, в совокупности влияют на несущие свойства крыла. Например, выдвижные закрылки, увеличивая, площадь крыла, позволяют снизить скорость взлета. Закрылки выпускаются непосредственно перед разгоном.
Пока самолет движется, набирая скорость по взлетно-посадочной полосе с опорой на переднее колесо, которое отцентрировано и застопорено, корректировка движения самолета, в случае необходимости, осуществляется посредством торможения основных колес.
При достижении взлетной скорости, пилот плавно берет штурвал на себя, тем самым увеличивая угол атаки. Сначала поднимается нос самолета, затем происходит отрыв от земли всей машины. Преодолев пятиметровую высоту, экипаж убирает шасси.
Взлет считается завершенным, когда самолет выходит на высоту перехода. Высота перехода является условной единицей, не привязанной к высоте относительно взлетной полосы или «уровнем моря». Она общепринята всеми международными диспетчерскими службами и определяется предварительным «эшелоном». В положении высоты перехода экипаж не имеет права продолжать горизонтальный полет. Самолет выполняет набор высоты и занимает свой «рабочий» эшелон, по которому продолжает маршрут.
Для каждого типа самолета существует некая усредненная скорость взлета. Так, для «Боинга 747» она составляет примерно – 270 км/час; для «Аэробуса А300» - 300 км/час; для ТУ 154 М – 210 км/час; для ИЛ 96 – 250 км/час; для ЯК 40 – 180 км/час.
Однако не следует забывать, что скорость отрыва напрямую зависит от удельной нагрузки на крыло и плотности воздуха. То есть, чем меньше плотность воздуха (высокогорье, летняя жара), тем меньше коэффициент подъемной силы, и тем больше должна быть скорость отрыва.
В некоторых экстренных случаях (недостаточная длина взлетно-посадочной полосы), может быть выполнен взлет «с подрывом». В этом случае пилот, посредством штурвала, резко меняет угол атаки, тем самым значительно увеличивая подъемную силу, но в ущерб скорости. Маневр, сам по себе, очень опасный, грозящий потерей управления.
Напротив, при выполнении самолетом отрыва, предусмотрен такой момент, как «выдерживание». Пилот не сразу выводит машину на высоту перехода, а направляет ее по небольшому восходящему углу, продолжая набирать скорость.
Потеря скорости при взлете, особенно опасна тем, что самолет, на этот момент, максимально загружен топливом, значительно увеличивающим общий вес. Большой вес увеличивает неуправляемую инерцию, что может повлечь катастрофу воздушного судна.
В зимнее время, в скорость взлета закладывается повышенный коэффициент, на случай температурного перепада по высоте. Верхние воздушные слои могут быть намного теплее надземных. В результате плотность воздуха резко падает и «провал» самолета, с последующим падением, неизбежен.
Такие «неожиданности» предусматривает штат наземных и воздушных метеорологических служб, которые предоставляют информацию диспетчерам, а диспетчеры всегда на связи с экипажами самолетов.
Не стоит волноваться, если безопасностью полета занимаются профессионалы.




© 2024
seagun.ru - Сделай потолок. Освещение. Электропроводка. Карниз