09.07.2020

Вычисление приближенного значения активности ионов в растворе электролита. Сильные электролиты. Активность. Ионная сила Что такое энергетический баланс? И когда я похудею


Всесторонний анализ довольно многочисленных способов вычисления активности составляет один из главных разделов современной термодинамической теории растворов. Нужные сведения можно найти в специальных руководствах. Ниже кратко рассмотрены только некоторые простейшие методы определения активности:

Вычисление активности растворителей по давлению их насыщенных паров. Если достаточно изучены летучесть чистой фазы растворителя и ее уменьшение, вызываемое наличием растворенных веществ, то активность растворителя вычисляется прямо по отношению (10.44). Давление насыщенного пара растворителя часто существенно отличается от летучести Но опыт, да и теоретические соображения показывают, что отклонение давления пара от летучести (если говорить об отношении остается приблизительно одинаковым для растворов не слишком большой концентрации. Поэтому приближенно

где давление насыщенного пара над чистым растворителем, тогда как давление насыщенного пара растворителя над раствором. Поскольку понижение давления насыщенного пара над растворами хорошо изучено для многих растворителей, то соотношение оказалось практически одним из наиболее удобных для вычисления активности растворителей.

Вычисление активности растворенного вещества по равновесию в двух растворителях. Пусть вещество В растворено в двух не смешивающихся друг с другом растворителях . И допустим, что активность (как функция концентрации В) изучена; обозначим ее Тогда нетрудно вычислить активность того же вещества В в другом растворителе А для всех райновесных концентраций. Понятно, что при этом нужно исходить из равенства химических потенциалов вещества В в равновесных фазах Однако равенство потенциалов не означает, что равны активности. Действительно, стандартные состояния В в растворах не одинаковы; они различаются разной энергией взаимодействия частиц вещества В с растворителями и эти стандартные состояния, вообще говоря, не равновесны друг с другом. Поэтому не одинаковы и летучести В в этих стандартных состояниях Но для рассматриваемых нами равновесных концентраций и А летучести В в этих фазах тождественны равн Поэтому для всех равновесных концентраций отношение активностей обратно пропорционально отношению летучестей В в стандартных состояниях

Этот простой и удобный способ вычисления активности вещества в одном растворителе по активности того же вещества в другом растворителе становится неточным, если один из этих растворителей заметно смешивается с другим.

Определение активности металлов измерением электродвижущей силы гальванического элемента. Следуя Льюису [А - 16], поясним этот способна примере твердых растворов меди и серебра. Пусть один из электродов, гальванического элемента изготовлен из совершенно чистой меди, а другой

электрод - из твердого раствора меди и серебра интересующей нас концентрации меди. Вследствие неодинаковых значений химического потенциала меди в этих электродах возникает электродвижущая сила та, которая при валентности носителей тока электролита растворов окисной меди для закйсной меди связана с разностью химических потенциалов меди соотношением

где число Фарадея; активность чистой фазы меди Приняв во внимание численные значения (10.51) можно переписать так ):

Вычисление активности растворителя по активности растворенного вещества. Для бинарного раствора (вещества В в растворителе А) по уравнению Гиббса-Дюгема (7.81) при и с учетом (10.45)

Поскольку в данном случае то и поэтому

Прибавляя это соотношение к (10.52), получаем

Интегрируем это выражение от чистой фазы растворителя когда до концентрации растворенного вещества Учитывая, что для стандартного состояния растворителя находим

Таким образом, если известна зависимость активности растворенного вещества В от его мольной доли, то графическим интегрированием (10.52) можно вычислить активность растворителя.

Вычисление активности растворенного вещества по активности растворителя. Нетрудно убедиться, что для вычисления активности растворенного вещества получается формула

симметричная (10.52). Однако в данном случае оказывается, что графическое интегрирование трудно выполнить с удовлетворительной точностью.

Льюис нашел выход из этого затруднения [А - 16]. Он показал, что подстановка простой функции

приводит формулу (10.53) к виду, удобному для графического интегрирования:

Здесь число молей вещества В в растворителя А. Если молекулярный вес растворителя, то

Вычисление активности растворителя по точкам отвердевания раствора. Выше была рассмотрена зависимость активности от состава растворов, причем предполагалось, что температура и давление постоянны. Именно для анализа изотермических изменений состава растворов представление об активности наиболее полезно. Но в некоторых случаях важно знать, как изменяется активность с температурой. На использовании температурного изменения активности основан один из наиболее важных способов определения активностей - по температурам отвердевания растворов. В дифференциальной форме получить зависимость активности от температуры нетрудно. Для этого достаточно сопоставить работу изменения состава раствора при от стандартного состояния до концентрации с работой того же процесса при или же просто повторить рассуждения, приводящие для летучести к формуле (10.12).

Химический потенциал растворов аналитически определяется через активность в точности так же, как для чистых фаз через летучесть. Поэтому для активностей получается та же формула (10.12), в которой место занимает разность парциальных энтальпий компонента в рассматриваемом состоянии и в его стандартном состоянии:

Здесь производная по температуре берется при неизменном составе раствора и постоянном внешнем давлении. Если известны парциальные теплоемкости, то по соотношению можно принять что после подстановки в (10.54) и интегрирования приводит к формуле

Льюис показал на примерах [А - 16], что для металлических растворов приближенное уравнение (10.55) пригодно с точностью до нескольких процентов в интервале температур 300-600° К.

Применим формулу (10.54) к растворителю А бинарного раствора вблизи точки отвердевания раствора, т. е. считая, что Более высокую

точку плавления чистой твердой фазы растворителя обозначим через а понижение точки отвердевания раствора обозначим

Если в качестве стандартного состояния принять чистую твердую фазу, то величина будет означать приращение парциальной энтальпии одного моля растворителя при плавлении, т. е. парциальную теплоту

плавления Таким образом, по (10.54)

Если принять, что

где мольная теплота плавления чистого растворителя при теплоемкости вещества А в жидком и твердом состояниях, и если при интегрировании (10.56) воспользоваться разложением подынтегральной функции в ряд, то получается

Для воды как растворителя коэффициент при в первом члене правой части равен

Вычисление активности растворенного вещества по точкам отвердевания раствора. Подобно тому, как это было сделано при выводе формулы (10.52), воспользуемся уравнением Гиббса - Дюгема; применим его для бинарного раствора, но, в отличие от вывода формулы (10.52), не будем переходить от числа молей к мольным долям. Тогда получим

Совмещая это с (10.56), находим

Далее, будем иметь в виду раствор, содержащий указанные числа молей в растворителя, имеющего молекулярный вес В этом случае Заметим, что для растворов в воде коэффициент при в (10.58) получается равным Для интегрирования (10.58) вводят следуя Льюису, вспомогательную величину

(Для растворов не в воде, а в каком-либо другом растворителе вместо 1,86 подставляется соответствующее значение криоскопической константы.) В итоге получается [А - 16]

Задача 529.
Вычислить приближенное значение активности ионов K + и SO 4 2- в 0,01 М растворе K 2 SO 4 .
Решение:
Уравнение диссоциации K 2 SO 4 имеет вид:
K 2 SO 4 ⇔ 2K + + SO 4 2- .
Активность иона (моль/л) связана с его молекулярной концентрацией в растворе соотношением: = fCM.
Здесь f коэффициент активности иона (безразмерная величина), С М – концентрация иона. Коэффициент активности зависит от заряда иона и ионной силы раствора, которая равна полусумме произведений концентрации каждого иона на квадрат заряда иона:

Ионная сила раствора равна:

I = 0,5 = 0,5(0,02 . 1 2) + (0,01 . 2 2) = 0,03.

Коэффициент активности ионов K + и SO 4 2- найдём по формуле, получим:

Теперь рассчитаем активность ионов K + и SO 4 2- из соотношения = fCM получим:

(K +) = 0,02 . 0,82 = 0,0164 моль/л; (SO 4 2-) = 0,01 . 0,45 = 0,0045 моль/л.

Ответ: (K +) = 0,0164 моль/л; (SO 4 2-) = 0,0045 моль/л.

Задача 530.
Вычислить приближенное значение активности ионов Ba 2+ и Cl - в 0,002 н. растворе BaCl 2 .
Решение:
M(BaCl 2) = C Э (BaCl 2)
С М = С Н = 2 . 0,002 = 0,004 моль/л.
Уравнение диссоциации хлорида бария имеет вид:

BaCl 2 ⇔ Ba 2+ + 2Cl - .

Активность иона (моль/л) связана с его молекулярной концентрацией в растворе соотношением: = fC M .
Здесь f - коэффициент активности иона (безразмерная величина), С М – концентрация иона. Коэффициент активности зависит от заряда иона и ионной силы раствора, которая равна полусумме произведений концентрации каждого иона на квадрат заряда иона:

Ионная сила раствора равна:

I = 0,5 = 0,5(0,004 . 2 2) + (0,008 . 1 2) = 0,024.

Коэффициент активности ионов Ba2+ и Cl- найдём по формуле, получим:

Теперь рассчитаем активность ионов Ba 2+ и Cl - из соотношения = fC M получим:

(Ba 2+) = 0,004 . 0,49 = 0,0196 моль/л; (Cl -) = 0,008 . 0,84 = 0,00672 моль/л.

Ответ: (Ba 2+) = 0,0196 моль/л; (Cl -) = 0,00672 моль/л.

Задача 531.
Найти приближенное значение коэффициента активности иона водорода в 0,0005 М растворе H 2 SO 4 , содержащем, кроме того, 0,0005 моль/л НСI. Считать, что серная кислота полностью диссоциирует по обеим ступеням.
Решение:
Общая концентрация ионов водорода составляет сумму от концентрации H 2 SO 4 и концентрации НСI. Кислоты диссоциируют по схеме:

H 2 SO 4 ⇔ 2H + + SO 4 2- ;
HCl ⇔ H + + Cl -

Из уравнений вытекает, что концентрация ионов водорода в серной кислоте в 2 раза выше, чем кислоты и составит: 2 . 0,0005 = 0,001 моль/л. Общая концентрация ионов водорода в растворе составит:

0,001 + 0,0005 = 0,0015 моль/л.

Коэффициент активности иона рассчитывается по формуле:

где f - коэффициент активности иона (безразмерная величина), I - ионная сила раствора, Z - заряд иона. Ионная сила раствора рассчитаем по уравнению:

Здесь концентрация иона в растворе, получим:

I = 0,5 = 0,002.

Рассчитаем коэффициент активности иона водорода.

Электрохимия

Активность ионов. Ионная сила раствора. Зависимость коэффициента активности иона от ионной силы раствора. Теория Дебая-Хюккеля.

Активность (ионов) - эффективная концентрация с учетом электростатического взаимодействия между ионами в растворе. Активность отличается от концентрации на некоторую величину. Отношение активности (а) к концентрации вещества в растворе (с, в г-ион/л) называется коэффициентом активности: γ = a/c.

Ионная сила раствора - мера интенсивности электрического поля, создаваемого ионами в растворе. Полусумма произведений из концентрации всех ионов в растворе на квадрат их заряда. Формула впервые была выведена Льюисом:

где cB - молярные концентрации отдельных ионов (моль/л), zB заряды ионов

Суммирование проводится по всем типам ионов, присутствующих в растворе. Если в растворе присутствуют два или несколько электролитов, то вычисляется общая суммарная ионная сила раствора. Для электролитов, в которых присутствуют многозарядные ионы, ионная сила обычно превышает молярность раствора.

Ионная сила раствора имеет большое значение в теории сильных электролитов Дебая - Хюккеля. Основное уравнение этой теории (предельный закон Дебая - Хюккеля) показывает связь между коэффициентом активности иона ze и ионной силы раствора I в виде: где γ - коэффициент активности, А - постоянная, не зависящая от заряда иона и ионной силы раствора, но зависящая от диэлектрической постоянной растворителя и температуры.

Отношение активности (a) к общей концентрации вещества в растворе (c, в моль/л), то есть активность ионов при концентрации 1 моль/л, называется коэффициентом активности :

В бесконечно разбавленных водных растворах неэлектролитов коэффициент активности равен единице. Опыт показывает, что по мере увеличения концентрации электролита величины f уменьшаются, проходят через минимум, а затем снова увеличиваются и становятся существенно большими единицы в крепких растворах. Такой ход зависимости f от концентрации определяется двумя физическими явлениями.

Первое особенно сильно проявляется при малых концентрациях и обусловлено электростатическим притяжением между противоположно заряженными ионами. Силы притяжения между ионами преобладают над силами отталкивания, т.е. в растворе устанавливается ближний порядок, при котором каждый ион окружен ионами противоположного знака. Следствием этого является усиление связи с раствором, что находит отражение в уменьшении коэффициента активности. Естественно, что взаимодействие между ионами возрастает при увеличении их зарядов.

При возрастании концентрации все большее влияние на активность электролитов оказывает второе явление, которое обусловлено взаимодействием между ионами и молекулами воды (гидратацией). При этом в относительно концентрированных растворах количество воды становится недостаточным для всех ионов и начинается постепенная дегидратация, т.е. связь ионов с раствором уменьшается, следовательно, увеличиваются коэффициенты активности.

Известны некоторые закономерности, касающиеся коэффициентов активности. Так, для разбавленных растворов (приблизительно до m = 0,05) соблюдается соотношение 1 - f = k√m. В несколько более разбавленных растворах (т ≈ 0,01) величины f не зависят от природы ионов. Это обусловлено тем, что ионы находятся на таких расстояниях друг от друга, на которых взаимодействие определяется только их зарядами.

При более высоких концентрациях наряду с зарядом на величину активности начинает оказывать влияние и радиус ионов.

Для оценки зависимости коэффициентов активности от концентрации в растворах, где присутствует несколько электролитов, Г. Льюис и М. Рэндалл ввели понятие о ионной силе I, которая характеризует интенсивность электрического поля, действующего на ионы в растворе. Ионная сила определяется как полусумма членов, полученных умножением моляльностей каждого иона mi на квадрат его валентности Zi:

I = 1/2∑miZi. (IX.18)

ДЕБАЯ - ХЮККЕЛЯ ТЕОРИЯ , статистич. теория разбавленных растворов сильных электролитов, позволяющая рассчитать коэф. активности ионов. Основана на предположении о полной диссоциации электролита на ионы, которые распределены в растворителе, рассматриваемом как непрерывная среда. Каждый ион действием своего электрич. заряда поляризует окружение и образует вокруг себя некоторое преобладание ионов противоположного знака - т. наз. ионную атмосферу. В отсутствие внеш. электрич. поля ионная атмосфера имеет сферич. симметрию и ее заряд равен по величине и противоположен по знаку заряду создающего ее центр. иона. Потенциал j суммарного электрич. поля, создаваемого центр. ионом и его ионной атмосферой в точке, расположенной на расстоянии r от центр. иона, м.б. рассчитан, если ионную атмосферу описывать непрерывным распределением плотности r заряда около центр. иона. Для расчета используют ур-ние Пуассона (в системе СИ):

n2j = -r/ee0,

где n2-оператор Лапласа, e - диэлектрич. проницаемость растворителя, e0 - электрич. постоянная (диэлектрич. проницаемость вакуума). Для каждого i-го сорта ионов r описывается ф-цией распределения Больцмана; тогда в приближении, рассматривающем ионы как точечные заряды (первое приближение Д.-Х.т.), решение ур-ния Пуассона принимает вид: где z - зарядовое число центр. иона, rd - т. наз. дебаевский радиус экранирования (радиус ионной атмосферы). На расстояниях r > rd потенциал j становится пренебрежимо малым, т. е. ионная атмосфера экранирует электрич. поле центр. иона.

В отсутствие внешнего электрического поля ионная атмосфера имеет сферическую симметрию, и её заряд равен по величине и противоположен по знаку заряду создающего её центрального иона. В этой теории не уделено почти никакого внимания образованию пар противоположно заряженных ионов путём непосредственного взаимодействия между ними.

Несмотря на то, что термодинамика не учитывает процессы, происходящие в реальных растворах, например, притяжение и отталкивание ионов, термодинамические закономерности, выведенные для идеальных растворов, можно применить и для реальных растворов, если заменить концентрации активностями.

Активность (a ) - такая концентрация вещества в растворе, при использовании которой свойства данного раствора могут быть описаны теми же уравнениями, что и свойства идеального раствора .

Активность может быть как меньше, так и больше номинальной концентрации вещества в растворе. Активность чистого растворителя, а также растворителя в не слишком концентрированных растворах принимается равной 1. За 1 принимается также активность твёрдого вещества, находящегося в осадке, или жидкости, не смешивающейся с данным раствором. В бесконечно разбавленном растворе активность растворённого вещества совпадает с его концентрацией.

Отношение активности вещества в данном растворе к его концентрации называется коэффициентом активности .

Коэффициент активности - это своеобразный поправочный коэффициент, показывающий, насколько реальность отличается от идеала.

Отклонения от идеальности в растворах сильных электролитов

Особенно заметное отклонение от идеальности имеет место в растворах сильных электролитов. Это отражается, например, на их температурах кипения, плавления, давлении пара над раствором и, что особенно важно для аналитической химии, на величинах констант различных равновесий, протекающих в таких растворах.

Для характеристики активности электролитов используют:

Для электролита A m B n:

Величина, которая учитывает влияние концентрации (С) и заряда (z) всех ионов, присутствующих в растворе, на активность растворённого вещества, называется ионной силой (I ).

Пример 3.1. В 1,00 л водного раствора содержится 10,3 г NaBr, 14,2 г Na 2 SO 4 и 1,7 г NH 3 . Чему равна ионная сила такого раствора?

0,100 моль/л

0,100 моль/л

С(Na +) = 0,300 моль/л, С(Br -) = 0,100 моль/л, С(SO 4 2-) = 0,100моль/л

I = 0,5× = 0,400 моль/л

Рис. 3.1. Влияние ионной силы на среднеионный коэффициент активности HCl

На рис. 3.1 показан пример влияния ионной силы на активность электролита (HCl). Аналогичная зависимость коэффициента активности от ионной силы наблюдается также у HClO 4 , LiCl, AlCl 3 и многих других соединений. У некоторых электролитов (NH 4 NO 3 , AgNO 3) зависимость коэффициента активности от ионной силы является монотонно убывающей.

Универсального уравнения, с помощью которого можно было бы рассчитать коэффициент активности любого электролита при любой величине ионной силы, не существует. Для описания зависимости коэффициента активности от ионной силы в очень разбавленных растворах (до I < 0,01) можно использовать предельный закон Дебая-Хюккеля

где A - коэффициент, зависящий от температуры и диэлектрической проницаемости среды; для водного раствора (298К) A » 0,511.

Данное уравнение было получено голландским физиком П. Дебаем и его учеником Э. Хюккелем исходя из следующих предположений. Каждый ион был представлен в виде точечного заряда (т.е. размер иона не учитывался), окружённого в растворе ионной атмосферой - областью пространства сферической формы и определённого размера, в которой содержание ионов противоположного знака по отношению к данному иону больше, чем вне её. Заряд ионной атмосферы равен по величине и противоположен по знаку заряду создавшего её центрального иона. Между центральным ионом и окружающей его ионной атмосферой существует электростатическое притяжение, которое стремится стабилизировать данный ион. Стабилизация приводит к понижению свободной энергии иона и уменьшению его коэффициента активности. В предельном уравнении Дебая-Хюккеля природа ионов не учитывается. Считается, что при малых значениях ионной силы коэффициент активности иона не зависит от его природы.

При увеличении ионной силы до 0,01 и больше предельный закон начинает давать всё большую и большую погрешность. Это происходит потому, что реальные ионы имеют определённый размер, вследствие чего их нельзя упаковать так плотно, как точечные заряды. При увеличении концентрации ионов происходит уменьшение размеров ионной атмосферы. Так как ионная атмосфера стабилизирует ион и уменьшает его активность, то уменьшение её размера приводит к менее значительному уменьшению коэффициента активности.

Для расчёта коэффициентов активности при ионных силах порядка 0,01 - 0,1 можно использовать расширенное уравнение Дебая-Хюккеля :

где B » 0,328 (T = 298K, a выражено в Œ), a - эмпирическая константа, характеризующая размеры ионной атмосферы.

При более высоких значениях ионной силы (до ~1) количественную оценку коэффициента активности можно проводить по уравнению Дэвиса.

Активность компонентов раствора - это концентрация компонентов, рассчитанная с учетом их взаимодействия в растворе. Термин «активность» был предложен в 1907 году американским ученым Льюисом в качестве величины, использование которой поможет сравнительно просто описать свойства реальных растворов.

Инструкция

Существуют разнообразные экспериментальные методы определения активности компонентов раствора. Например, по повышению температуры кипения исследуемого раствора. Если эта температура (обозначьте ее символом T) выше, чем температура кипения чистого растворителя (То), то натуральный логарифм активности растворителя вычисляется по следующей формуле: lnA = (-?H/RT0T) х?T. Где, ?Н – теплота испарения растворителя в температурном интервале между То и Т.

Можете определить активность компонентов раствора по понижению температуры замерзания исследуемого раствора. В этом случае, натуральный логарифм активности растворителя рассчитывается по следующей формуле: lnA = (-?H/RT0T) х?T, где, ?H – теплота замерзания раствора в интервале между температурой замерзания раствора (Т) и температурой замерзания чистого растворителя (То).

Рассчитайте активность с помощью метода изучения равновесия химической реакции с газовой фазой. Предположим, у вас проходит химическая реакция между расплавом оксида какого-нибудь металла (обозначьте его общей формулой МеО) и газом. Например: МеО + Н2 = Ме + Н2О - то есть оксид металла восстанавливается до чистого металла, с образованием воды в виде водяного пара.

В этом случае константа равновесия реакции рассчитывается следующим образом: Кр = (pH2O х Аме) / (рН2 х Амео), где p – парциальное давление паров водорода и воды соответственно, А – активности чистого металла и его оксида соответственно.

Вычислите активность методом вычисления электродвижущей силы гальванического элемента, образованного раствором или расплавом электролита. Этот способ считается одним из самых точных и надежных для определения активности.

Оборачиваемость капитала – это скорость прохождения денежными средствами различных стадий производства и обращения. Чем больше скорость обращения капитала, тем большую прибыль получит организация, что говорит о росте ее деловой активности.

Инструкция

Оборачиваемость активов в оборотах рассчитайте делением размера выручки на среднегодовую стоимость активов.

где А – среднегодовая стоимость активов (всего капитала)-
В – выручка за анализируемый период (год).

Найденный показатель укажет, какое количество оборотов совершают средства, вложенные в имущество организации за анализируемый период. При росте значения данного показателя повышается деловая активность фирмы.

Разделите длительность анализируемого периода на оборачиваемость активов, тем самым вы найдете длительность одного оборота. При анализе следует учесть, что чем меньше значение данного показателя, тем лучше для организации.

Для наглядности используйте таблицы.

Рассчитайте коэффициент закрепления оборотных активов, который равен средней сумме оборотных активов за анализируемый период, деленных на выручку организации.

Данный коэффициент говорит о том, сколько оборотных средств затрачено на 1 рубль реализованной продукции.

Теперь сделайте расчет продолжительности операционного цикла, который равен длительности оборота сырья и материалов, плюс длительность оборота готовой продукции, плюс длительность оборота незавершенного производства, а также длительность оборота дебиторской задолженности.

Данный показатель должен рассчитываться за несколько периодов. Если замечена тенденция к его росту, это говорит об ухудшении состояния деловой активности компании, т.к. при этом замедляется оборачиваемость капитала. Поэтому у компании повышаются потребности в денежных средствах, и она начинает испытывать финансовые затруднения.

Помните, что продолжительность финансового цикла - это продолжительность операционного цикла за минусом длительности оборота кредиторской задолженности.

Чем меньшее значение имеет данный показатель, тем выше деловая активность.

На оборачиваемость капитала влияет и коэффициент устойчивости экономического роста. Этот показатель считается по формуле:

(Чпр-Д)/ Ск

где Чпр - чистая прибыль компании;
Д – дивиденды;
Ск - собственный капитал.

Данный показатель характеризует средний темп роста развития организации. Чем выше его значение, тем лучше, так как это говорит о развитии предприятии, расширении и росте возможностей для повышения его деловой активности в последующих периодах.

Полезный совет

Понятие «активность» тесно связано с понятием «концентрация». Их взаимоотношение описывается формулой: В = А/С, где А – активность, С – концентрация, В – «коэффициент активности».




© 2024
seagun.ru - Сделай потолок. Освещение. Электропроводка. Карниз