18.10.2020

Сложные реакции с кислородом. Кислород физические свойства. Нахождение кислорода в природе


Атомы Кислорода могут образовывать два типа молекул: O 2 - кислород и O 3 - озон.

Явление существования нескольких простых веществ, образованных атомами одного химического элемента, называется алотропією. А простые вещества, образованные одним элементом, называют алотропними модификациями.

Следовательно, озон и кислород - это аллотропные модификации элемента Кислорода.

Свойства

Кислород

Озон

Формула соединения

O 2

O 3

Внешний вид в обычных условиях

Газ

Газ

Цвет

В парах кислород бесцветный. Жидкий - бледно-голубого цвета, а твердый - синего

Пары озона светло-синего цвета. Жидкий - синего цвета, а твердый представляет собой темно-фиолетовые кристаллы

Запах и вкус

Без запаха и вкуса

Резкий характерный запах (в малых концентрациях придает воздуху запах свежести)

Температура плавления

219 °С

192 °С

Температура кипения

183 °С

112 °С

Плотность при н. у.

1,43 г/л

2,14 г/л

Растворимость уводі

4 объемы кислорода в 100 объемах воды

45 объемов озона в 100 объемах воды

Магнитные свойства

Жидкий и твердый кислород - парамагнитные вещества, т.е. втягиваются в магнитное поле

Имеет диамагнитные свойства, то есть не взаимодействует с магнитным полем

Биологическая роль

Необходим для дыхания растений и животных (в смеси с азотом или инертным газом). Вдыхание чистого кислорода приводит к сильному отравлению

В атмосфере образует так называемый озоновый слой, который защищает биосферу от вредного воздействия ультрафиолетового излучения. Ядовитый

Химические свойства кислорода и озона

Взаимодействие кислорода с металлами

Молекулярный кислород - довольно сильный окислитель. Он окисляет практически все металлы (кроме золота и платины). Много металлов медленно окисляются на воздухе, но в атмосфере чистого кислорода сгорают очень быстро, при этом образуется оксид:

Однако некоторые металлы при горении образуют не оксиды, а пероксиды (в таких соединениях степень окисления Кислорода равна -1) или надпероксиди (степень окисления атома Кислорода - дробная). Примером таких металлов могут быть барий, натрий и калий:

Взаимодействие кислорода с неметаллами

Оксиген проявляет степень окисления -2 в соединениях, которые образованы со всеми неметаллами, кроме Фтора, Гелия, Неона и Аргона. Молекулы кислорода при нагревании непосредственно вступают во взаимодействие со всеми неметаллами, кроме галогенов и инертных газов. В атмосфере кислорода фосфор самовоспламеняется и некоторые другие неметаллы:

При взаимодействия кислорода с фтором образуется кислород фторид, а не фтор оксид, поскольку атом Фтора имеет большую электроотрицательности, чем атом Кислорода. Оксиген фторид - это газ бледно-желтого цвета. Его используют как очень сильный окислитель и фторувальний агент. В этой соединении степень окисления Кислорода равна +2.

В избытка фтора может образовываться диоксиген дифторид, в котором степень окисления Кислорода равна +1. По строению такая молекула похожа на молекулу водород пероксида.

Применение кислорода и озона. Значение озонового слоя

Кислород используют все аэробные живые существа для дыхания. В процессе фотосинтеза растения выделяют кислород и поглощают углекислый газ.

Молекулярный кислород применяют для так называемой интенсификации, то есть ускорение окислительных процессов в металлургической промышленности. А еще кислород используют для добывания пламени с высокой температурой. При горении ацетилена (С 2 Н 2) в кислороде температура пламени достигает 3500 °С. В медицине кислород применяют для облегчения дыхания больных. Его также используют в дыхательных аппаратах для работы людей в трудной для дыхания атмосфере. Жидкий кислород применяют как окислитель ракетного топлива.

Озон используют в лабораторной практике как очень сильный окислитель. В промышленности с его помощью дезинфицируют воду, поскольку ему присуща сильная окислительная действие, которая уничтожает различные микроорганизмы.

Пероксиды, надпероксиди и озонидов щелочных металлов применяют для регенерации кислорода в космических кораблях и на подводных лодках, Такое применение основано на реакции этих веществ с углекислым газом СО 2:

В природе озон содержится в высоких слоях атмосферы на высоте около 20-25 км, в так называемом озоновом слое, который защищает Землю от жесткого солнечного излучения. Уменьшение концентрации озона в стратосфере хотя бы на 1 может привести к тяжелым последствиям, таким рост числа онкологических заболеваний кожи в людей и животных, увеличение числа заболеваний, связанных с угнетением иммунной системы человека, замедление роста наземных растений, снижение скорости роста фитопланктона и т.д.

Без озонового слоя жизнь на планете было бы невозможным. Тем временем загрязнение атмосферы различными промышленными выбросами приводят к разрушению озонового слоя. Самыми опасными веществами для озона являются фреоны (их используют как хладагенты в холодильных машинах, а также как наполнители для баллончиков с дезодорантами) и отходы ракетного топлива.

Мировое сообщество очень обеспокоено в связи с образованием дыры в озоновом слое на полюсах нашей планеты, в связи с чем в 1987 г. был принят «Монреальский протокол по веществам, разрушающим озоновый слой», который ограничил использование веществ, вредных для озонового слоя.

Физические свойства веществ, образованных элементом Сульфуром

Атомы Серы, так же, как и Кислорода, могут образовывать различные аллотропные модификации (S ∞ ; S 12 ; S 8 ; S 6 ; S 2 и другие). При комнатной температуре сера находится в виде α -серы (или ромбической серы), что представляет собой желтые хрупкие кристаллы, без запаха, не растворимые в воде. При температуре свыше +96 °С происходит медленный переход α -серы в β -серу (или моноклінну серу), что представляет собой почти белые пластинки. Если расплавленную серу перелить в воду, происходит переохлаждение жидкой серы и образования желто-коричневой резино-подобной пластической серы, которая погодя снова превращается в а-серу. Сера кипит при температуре, равной +445 °С, образуя пары темно-бурого цвета.

Все модификации серы не растворяются в воде, зато достаточно хорошо растворяются в сероуглероде (CS 2 ) и некоторых других неполярных растворителях.

Применение серы

Главный продукт серной промышленности - это сульфатная кислота. На ее производство приходится около 60 % серы, которую добывают. В гумотехнічній промышленности серу используют для превращения каучука в высококачественную резину, то есть для вулканизации каучука. Сера - важнейший компонент любых пиротехнических смесей. Например, в спичечных головках содержится около 5 %, а в намазці на коробке - около 20 % серы по массе. В сельском хозяйстве серу используют для борьбы с вредителями виноградников. В медицине серу применяют при изготовлении различных мазей для лечения кожных заболеваний.


Четыре элемента-«халькогена» (т.е. «рождающих медь») возглавляют главную подгруппу VI группы (по новой классификации - 16-ю группу) периодической системы. Кроме серы, теллура и селена к ним также относится кислород. Давайте подробно разберем свойства этого наиболее распространенного на Земле элемента, а также применение и получение кислорода.

Распространенность элемента

В связанном виде кислород входит в химический состав воды - его процентное соотношение составляет порядка 89%, а также в состав клеток всех живых существ - растений и животных.

В воздухе кислород находится в свободном состоянии в виде О2, занимая пятую часть его состава, и в виде озона - О3.

Физические свойства

Кислород О2 представляет собой газ, который не обладает цветом, вкусом и запахом. В воде растворяется слабо. Температура кипения - 183 градуса ниже нуля по Цельсию. В жидком виде кислород имеет голубой цвет, а в твердом виде образует синие кристаллы. Температура плавления кислородных кристаллов составляет 218,7 градуса ниже нуля по Цельсию.

Химические свойства

При нагревании этот элемент реагирует со многими простыми веществами, как металлами, так и неметаллами, образуя при этом так называемые оксиды - соединения элементов с кислородом. в которую элементы вступают с кислородом, называется окислением.

Например,

4Na + О2= 2Na2O

2. Через разложение перекиси водорода при нагревании ее в присутствии оксида марганца, выступающего в роли катализатора.

3. Через разложение перманганата калия.

Получение кислорода в промышленности проводится такими способами:

1. Для технических целей кислород получают из воздуха, в котором обычное его содержание составляет порядка 20%, т.е. пятую часть. Для этого воздух сначала сжигают, получая смесь с содержанием жидкого кислорода около 54%, жидкого азота - 44% и жидкого аргона - 2%. Затем эти газы разделяют с помощью процесса перегонки, используя сравнительно небольшой интервал между температурами кипения жидкого кислорода и жидкого азота - минус 183 и минус 198,5 градуса соответственно. Получается, что азот испаряется раньше, чем кислород.

Современная аппаратура обеспечивает получение кислорода любой степени чистоты. Азот, который получается при разделении используется в качестве сырья при синтезе его производных.

2. также дает кислород очень чистой степени. Этот способ получил распространение в странах с богатыми ресурсами и дешевой электроэнергией.

Применение кислорода

Кислород является основным по значению элементом в жизнедеятельности всей нашей планеты. Этот газ, который содержится в атмосфере, расходуется в процессе животными и людьми.

Получение кислорода очень важно для таких сфер деятельности человека, как медицина, сварка и резка металлов, взрывные работы, авиация (для дыхания людей и для работы двигателей), металлургия.

В процессе хозяйственной деятельности человека кислород расходуется в больших количествах - например, при сжигании различных видов топлива: природного газа, метана, угля, древесины. Во всех этих процессах образуется При этом природа предусмотрела процесс естественного связывания данного соединения с помощью фотосинтеза, который проходит в зеленых растениях под действием солнечного света. В результате этого процесса образуется глюкоза, которую растение потом расходует для строительства своих тканей.

ОПРЕДЕЛЕНИЕ

Кислород – элемент второго периода VIA группы Периодической системы химических элементов Д.И. Менделеева, с атомным номером 8. Символ – О.

Атомная масса – 16 а.е.м. Молекула кислорода двухатомна и имеет формулу – О 2

Кислород относится к семейству p-элементов. Электронная конфигурация атома кислорода 1s 2 2s 2 2p 4 . В своих соединениях кислород способен проявлять несколько степеней окисления: «-2», «-1» (в пероксидах), «+2» (F 2 O). Для кислорода характерно проявление явления аллотропии – существования в виде нескольких простых веществ – аллотропных модификаций. Аллотропные модификации кислорода – кислород O 2 и озон O 3 .

Химические свойства кислорода

Кислород является сильным окислителем, т.к. для завершения внешнего электронного уровня ему не хватает всего 2-х электронов, и он легко их присоединяет. По химической активности кислород уступает только фтору. Кислород образует соединения со всеми элементами кроме гелия, неона и аргона. Непосредственно кислород нее вступает в реакции взаимодействия с галогенами, серебром, золотом и платиной (их соединения получают косвенным путем). Почти все реакции с участием кислорода – экзотермические. Характерная особенность многих реакций соединения с кислородом — выделение большого количества теплоты и света. Такие процессы называют горением.

Взаимодействие кислорода с металлами. Со щелочными металлами (кроме лития) кислород образует пероксиды или надпероксиды, с остальными – оксиды. Например:

4Li + O 2 = 2Li 2 O;

2Na + O 2 = Na 2 O 2 ;

K + O 2 = KO 2 ;

2Ca + O 2 = 2CaO;

4Al + 3O 2 = 2Al 2 O 3 ;

2Cu + O 2 = 2CuO;

3Fe + 2O 2 = Fe 3 O 4 .

Взаимодействие кислорода с неметаллами. Взаимодействие кислорода с неметаллами протекает при нагревании; все реакции экзотермичны, за исключением взаимодействия с азотом (реакция эндотермическая, происходит при 3000С в электрической дуге, в природе – при грозовом разряде). Например:

4P + 5O 2 = 2P 2 O 5 ;

С + O 2 = СО 2 ;

2Н 2 + O 2 = 2Н 2 О;

N 2 + O 2 ↔ 2NO – Q.

Взаимодействие со сложными неорганическими веществами. При горении сложных веществ в избытке кислорода образуются оксиды соответствующих элементов:

2H 2 S + 3O 2 = 2SO 2 + 2H 2 O (t);

4NH 3 + 3O 2 = 2N 2 + 6H 2 O (t);

4NH 3 + 5O 2 = 4NO + 6H 2 O (t, kat);

2PH 3 + 4O 2 = 2H 3 PO 4 (t);

SiH 4 + 2O 2 = SiO 2 + 2H 2 O;

4FeS 2 +11O 2 = 2Fe 2 O 3 +8 SO 2 (t).

Кислород способен окислять оксиды и гидроксиды до соединений с более высокой степенью окисления:

2CO + O 2 = 2CO 2 (t);

2SO 2 + O 2 = 2SO 3 (t, V 2 O 5);

2NO + O 2 = 2NO 2 ;

4FeO + O 2 = 2Fe 2 O 3 (t).

Взаимодействие со сложными органическими веществами. Практически все органические вещества горят, окисляясь кислородом воздуха до углекислого газа и воды:

CH 4 + 2O 2 = CO 2 +H 2 O.

Кроме реакций горения (полное окисление) возможны также реакции неполного или каталитического окисления, в этом случае продуктами реакции могут быть спирты, альдегиды, кетоны, карбоновые кислоты и другие вещества:

Окисление углеводов, белков и жиров служит источником энергии в живом организме.

Физические свойства кислорода

Кислород – самый распространенный элемент на земле (47% по массе). В воздухе содержание кислорода составляет 21% по объему. Кислород – составная часть воды, минералов, органических веществ. В растительных и животных тканях содержится 50 -85 % кислорода в виде различных соединений.

В свободном состоянии кислород представляет собой газ без цвета, вкуса и запаха, плохо растворимый в воде (в 100 л воды при 20С растворяется 3 л кислорода. Жидкий кислород голубого цвета, обладает парамагнитными свойствами (втягивается в магнитное поле).

Получение кислорода

Различают промышленные и лабораторные способы получения кислорода. Так, в промышленности кислород получают перегонкой жидкого воздуха, а к основным лабораторным способам получения кислорода относят реакции термического разложения сложных веществ:

2KMnO 4 = K 2 MnO 4 + MnO 2 + O 2

4K 2 Cr 2 O 7 = 4K 2 CrO 4 + 2Cr 2 O 3 +3 O 2

2KNO 3 = 2KNO 2 + O 2

2KClO 3 = 2KCl +3 O 2

Примеры решения задач

ПРИМЕР 1

Задание При разложении 95 г оксида ртути (II) образовалось 4,48 л кислорода (н.у.). Вычислите долю разложившегося оксида ртути (II) (в мас. %).
Решение Запишем уравнение реакции разложения оксида ртути (II):

2HgO = 2Hg + O 2 .

Зная объем выделившегося кислорода, найдем его количество вещества:

моль.

Согласно уравнению реакции n(HgO):n(O 2) = 2:1, следовательно,

n(HgO) = 2×n(O 2) = 0,4 моль.

Вычислим массу разложившегося оксида. Количество вещества связано с массой вещества соотношением:

Молярная масса (молекулярная масса одного моль) оксида ртути (II), рассчитанная с помощью таблицы химических элементов Д.И. Менделеева – 217 г/моль. Тогда масса оксида ртути (II) равна:

m (HgO) = n (HgO) ×M (HgO) = 0,4×217 = 86,8 г.

Определим массовую долю разложившегося оксида:

План:

    История открытия

    Происхождение названия

    Нахождение в природе

    Получение

    Физические свойства

    Химические свойства

    Применение

    Биологическая роль кислорода

    Токсические производные кислорода

10. Изотопы

Кислород

Кислоро́д - элемент 16-й группы (по устаревшей классификации - главной подгруппы VI группы), второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 8. Обозначается символом O(лат. Oxygenium). Кислород - химически активный неметалл, является самым лёгким элементом из группы халькогенов. Простое вещество кислород (CAS-номер: 7782-44-7) при нормальных условиях - газ без цвета, вкуса и запаха, молекула которого состоит из двух атомов кислорода (формула O 2), в связи с чем его также называют дикислород.Жидкий кислород имеет светло-голубой цвет, а твёрдый представляет собой кристаллы светло-синего цвета.

Существуют и другие аллотропные формы кислорода, например, озон (CAS-номер: 10028-15-6) - при нормальных условиях газ голубого цвета со специфическим запахом, молекула которого состоит из трёх атомов кислорода (формула O 3).

  1. История открытия

Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье. В 1775 году А. Лавуазье установил, что кислород является составной частью воздуха, кислот и содержится во многих веществах.

Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Пьера Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория. Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожженных элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

  1. Происхождение названия

Слово кислород (именовался в начале XIX века ещё «кислотвором») своим появлением в русском языке до какой-то степени обязано М. В. Ломоносову, который ввёл в употребление, наряду с другими неологизмами, слово «кислота»; таким образом слово «кислород», в свою очередь, явилось калькой термина «оксиген» (фр. oxygène), предложенного А. Лавуазье (от др.-греч. ὀξύς - «кислый» и γεννάω - «рождаю»), который переводится как «порождающий кислоту», что связано с первоначальным значением его - «кислота», ранее подразумевавшим вещества, именуемые по современной международной номенклатуре оксидами.

  1. Нахождение в природе

Кислород - самый распространённый на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47,4 % массы твёрдой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода - 88,8 % (по массе), в атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,12 % по массе. Более 1500 соединений земной коры в своём составе содержат кислород.

Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле - около 65 %.

Лекция «Кислород – химический элемент и простое вещество »

План лекции:

1. Кислород – химический элемент:

в) Распространённость химического элемента в природе

2. Кислород – простое вещество

а) Получение кислорода

б) Химические свойства кислорода

в) Круговорот кислорода в природе

г) Применение кислорода

«Dum spiro spero » (Пока дышу, надеюсь...), - гласит латынь

Дыхание – это синоним жизни, а источник жизни на Земле – кислород.

Подчёркивая важность кислорода для земных процессов, Яков Берцелиус сказал: « Кислород – это вещество, вокруг которого вращается земная химия»

Материал данной лекции обобщает ранее полученные знания по теме «Кислород».

1. Кислород – химический элемент

а) Характеристика химического элемента – кислорода по его положению в ПСХЭ


Кислород - элемент главной подгруппы шестой группы, второго периода периодической системы химических элементов Д. И. Менделеева, с атомным порядковым номером 8. Обозначается символом O (лат. Oxygenium ). Относительная атомная масса химического элемента кислорода равна 16, т.е. Ar (O )=16.

б) Валентные возможности атома кислорода

В соединениях кислород обычно двухвалентен (в оксидах), валентность VI не существует.В свободном виде встречается в виде двух простых веществ: О 2 («обычный» кислород) и О 3 (озон). О 2 - газ без цвета и запаха, с относительной молекулярной массой =32. О 3 – газ без цвета с резким запахом, с относительной молекулярной массой =48.

Внимание! H 2 O 2 (перекись водорода) – O (валентность II)

СО (угарный газ) – О (валентность III)

в) Распространённость химического элемента кислорода в природе

Кислород - самый распространенный на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов), приходится около 49% массы твердой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода - 85,5% (по массе), в атмосфере содержание свободного кислорода составляет 21% по объёму и 23% по массе. Более 1500 соединений земной коры в своем составе содержат кислород.

Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 20 %, по массовой доле - около 65 %.

2. Кислород – простое вещество

а) Получение кислорода

Получение в лаборатории

1) Разложение перманганата калия (марганцовка):

2KMnO 4 t˚C =K 2 MnO 4 +MnO 2 +O 2

2) Разложение перекиси водорода:

2H 2 O 2 MnO2 =2H 2 O + O 2

3) Разложение бертолетовой соли:

2KClO 3 t˚C , MnO2 =2KCl + 3O 2

Получение в промышленности

1) Электролиз воды

2 H 2 O эл . ток =2 H 2 + O 2

2) Из воздуха

ВОЗДУХ давление, -183˚ C = O 2 (голубая жидкость)

В настоящее время в промышленности кислород получают из воздуха. В лабораториях небольшие количества кислорода можно получать нагреванием перманганата калия (марганцовка) KMnO 4 . Кислород мало растворим в воде и тяжелее воздуха, поэтому его можно получать двумя способами:




© 2024
seagun.ru - Сделай потолок. Освещение. Электропроводка. Карниз