18.10.2020

Многоатомные спирты naoh. Многоатомные спирты. Типичные реакции одноатомных и многоатомных спиртов


Лекция № 3.

Многоатомные спирты, их строение и свойства.

Представители многоатомных спиртов - этиленгликоль и глицерин. Двухатомные спирты, содержащие две гидроксильные группы-ОН, называются гликолями, или диолами, трехатомные спирты, содержащие три гидроксильные группы, - глицеринами, или триолами.

Положение гидроксильных групп указывается цифрами в конце названия.

Физические свойства

Многоатомные спирты - бесцветные сиропообразные жидкости сладковатого вкуса, хорошо растворимы в воде, плохо - в органических растворителях; имеют высокие температуры кипения. Например, tкип этиленгликоля 198°С, плотность () 1,11 г/см3; tкип (глицерин) = 290°С, глицерин = 1,26 г/см3.

Получение

Двух- и трехатомные спирты получают теми же способами, что и одноатомные. В качестве исходных соединений могут быть использованы алкены, галогенопроизводные и другие соединения.

1. Этиленгликоль (этандиол-1,2) синтезируют из этилена различными способами:

3CH 2 =CH 2 + 2KMnO 4 + 4H 2 O ® 3HO–CH 2 –CH 2 –OH + 2MnO 2 + 2KOH

2. Глицерин (пропантриол -1,2,3) получают из жиров, а также синтетическим путем из газов крекинга нефти (пропилена), т.е. из непищевого сырья.

Химические свойства

Многоатомные спирты по химическим свойствам сходны с одноатомными спиртами. Однако в химических свойствах многоатомных спиртов есть особенности, обусловленные присутствием в молекуле двух и более гидроксильных групп.

Кислотность многоатомных спиртов выше, чем одноатомных, что объясняется наличием в молекуле дополнительных гидроксильных групп, обладающих отрицательным индуктивным эффектом. Поэтому многоатомные спирты, в отличие от одноатомных, реагируют со щелочами, образуя соли. Например, этиленгликоль реагирует не только с щелочными металлами, но и с гидроксидами тяжелых металлов.

По аналогии с алкоголятами соли двухатомных спиртов называются гликолятами, а трехатомных - глицератами.

При взаимодействии этиленгликоля с галогеноводородами (НСl, HBr) одна гидроксильная группа замещается на галоген:

Вторая гидроксогруппа замещается труднее, под действием РСl5.

При взаимодействии гидроксида меди (II) с глицерином и другими многоатомными спиртами происходит растворение гидроксида и образуется комплексное соединение ярко-синего цвета.

Эта реакция используется для обнаружения многоатомных спиртов, имеющих гидроксильные группы при соседних атомах углерода -СH(ОН)-СН(ОН)-:

В отсутствие щелочи многоатомные спирты не реагируют с |гидроксидом меди (II) - их кислотность для этого недостаточна.

Многоатомные спирты взаимодействуют с кислотами, образуя сложные эфиры (см. §7). При взаимодействии глицерина с азотной кислотой в присутствии концентрированной серной кислоты образуется нитроглицерин (тринитрат глицерина):

Для спиртов характерны реакции, в результате которых образуются циклические структуры:

Применение

Этиленгликоль используется главным образом для производства лавсана и для приготовления антифризов - водных растворов, замерзающих значительно ниже 0°С (использование их для охлаждения двигателей позволяет автомобилям работать в зимнее время).

Глицерин широко используется в кожевенной, текстильной промышленности при отделке кож и тканей и в других областях народного хозяйства. Наиболее важной областью применения глицерина является производство тринитрата глицерина (неверно называемого нитроглицерином) - это сильное взрывчатое вещество, которое взрывается от удара, а также лекарство (сосудорасширяющее средство). Сорбит (шестиатомный спирт) используется как заменитель сахара для больных диабетом.

Тест № 4.

Свойства многоатомных спиртов

1. С какими из перечисленных ниже веществ будет реагировать глицерин?

1) HBr 2) HNO 3 3) H 2 4) H 2 O 5)Cu(OH) 2 6) Ag 2 O/NH 3

2. Глицерин не реагирует с 1)HNO 3 2)NaOH 3)CH 3 COOH 4)Cu(OH) 2

3. Этиленгликоль не реагирует с 1)HNO 3 2)NaOH 3)CH 3 COOH 4)Cu(OH) 2

4. Со свежеосажденным гидроксидом меди (II) не будет взаимодействовать: 1) глицерин;

2) бутанон 3) пропаналь 4) пропандиол-1,2

5. Свежеприготовленный осадок Сu(ОН) 2 растворится, если к нему добавить

1)пропандиол-1,2 2)пропанол-1 3) пропен4)пропанол-2

6. Глицерин в водном растворе можно обнаружить с помощью

1) хлорной извести 2) хлорида железа (III) 3) гидроксида меди (II) 4) гидроксида натрия

7. Какой из спиртов реагирует с гидроксидом меди (II)?

1)СН 3 ОН 2) СН 3 СН 2 ОН 3) С 6 Н 5 ОН 4)НО-СН 2 СН 2 -ОН

8. Характерной реакцией для многоатомных спиртов является взаимодействие с

1) H 2 2) Сu 3) Ag 2 O (NH 3 р-р) 4) Cu(OH) 2

9. Вещество, реагирующее с Na и Cu(OH) 2 – это:

1) фенол; 2) одноатомный спирт; 3) многоатомный спирт 4) алкен

10. Этандиол-1,2 может реагировать с

1) гидроксидом меди (II)

2) оксидом железа (II)

3) хлороводородом

4)водородом

6) фосфором

Лекция № 4.

Фенолы, их строение. Свойства фенола, взаимное влияние атомов в молекуле фенола. Орто-, паро-ориентирующее действие гидроксильной группы. Получение и применение фенола

ФЕНОЛЫ – класс органических соединений. Содержат одну или несколько группировок С–ОН, при этом атом углерода входит в состав ароматического (например, бензольного) кольца.

Классификация фенолов . Различают одно-, двух-, трехатомные фенолы в зависимости от количества ОН-групп в молекуле (рис.1)

Рис. 1. ОДНО-, ДВУХ- И ТРЕХАТОМНЫЕ ФЕНОЛЫ

В соответствии с количеством конденсированных ароматических циклов в молекуле различают (рис. 2) сами фенолы (одно ароматическое ядро – производные бензола), нафтолы (2 конденсированных ядра – производные нафталина), антранолы (3 конденсированных ядра – производные антрацена) и фенантролы (рис. 2).

Рис. 2. МОНО- И ПОЛИЯДЕРНЫЕ ФЕНОЛЫ

Номенклатура фенолов

Для фенолов широко используют тривиальные названия, сложившиеся исторически. В названиях замещенных моноядерных фенолов используются также приставки орто-, мета- и пара -, употребляемые в номенклатуре ароматических соединений. Для более сложных соединений нумеруют атомы, входящие в состав ароматических циклов и с помощью цифровых индексов указывают положение заместителей (рис. 3).

Рис. 3. НОМЕНКЛАТУРА ФЕНОЛОВ. Замещающие группы и соответствующие цифровые индексы для наглядности выделены различными цветами.

Химические свойства фенолов

Бензольное ядро и ОН-группа, объединенные в молекуле фенола, влияют друг на друга, существенно повышая реакционную способность друг друга. Фенильная группа оттягивает на себя неподеленную электронную пару от атома кислорода в ОН-группе (рис. 4). В результате на атоме Н этой группы увеличивается частичный положительный заряд (обозначен значком d+), полярность связи О–Н возрастает, что проявляется в увеличении кислотных свойств этой группы. Таким образом, в сравнении со спиртами, фенолы представляют собой более сильные кислоты. Частичный отрицательный заряд (обозначен через d–), переходя на фенильную группу, сосредотачивается в положениях орто- и пара- (по отношению к ОН-группе). Эти реакционные точки могут атаковаться реагентами, тяготеющими к электроотрицательным центрам, так называемыми электрофильными («любящими электроны») реагентами.

Рис. 4. РАСПРЕДЕЛЕНИЕ ЭЛЕКТРОННОЙ ПЛОТНОСТИ В ФЕНОЛЕ

В итоге для фенолов возможны два типа превращений: замещение атома водорода в ОН-группе и замещение Н-атомобензольном ядре. Пара электронов атома О, оттянутая к бензольному кольцу, увеличивает прочность связи С–О, поэтому реакции, протекающие с разрывом этой связи, характерные для спиртов, для фенолов не типичны.

1. Обладает слабыми кислотными свойствами, при действии щелочей образует соли - феноляты (например, фенолят натрия - C6H6ONa):

C 6 H 5 OH + NaOH = C 6 H 5 ONa + H 2 O

Вступает в реакции электрофильного замещения по ароматическому кольцу. Гидрокси-группа, являясь одной из самых сильных донорных групп, увеличивает реакционную способность кольца к этим реакциям, и направляет замещение в орто- и пара-положения. Фенол с лёгкостью алкилируется, ацилируется, галогенируется, нитруется и сульфируется.

Реакция Кольбе-Шмидта.

2. Взаимодействие с металлическим натрием:

C 6 H 5 OH + Na = C 6 H 5 ONa + H 2

3. Взаимодействие с бромной водой (качественная реакция на фенол):

C 6 H 5 OH + 3Br 2 (водн.) → C 6 H 2 (Br) 3 OH + 3HBr образуется 2,4,6 трибромфенол

4. Взаимодействие с концентрированной азотной кислотой:

C 6 H 5 OH + 3HNO 3 конц → C 6 H 2 (NO 2) 3 OH + 3H 2 О образуется 2,4,6 тринитрофенол

5. Взаимодействие с хлоридом железа (III)(качественная реакция на фенол):

C 6 H 5 OH + FeCl 3 → 2 +(Cl)2- + HCl образуется дихлоридфенолят железа (III)(фиолетовое окрашивание)

Способы получения фенолов.

Фенолы выделяют из каменноугольной смолы, а также из продуктов пиролиза бурых углей и древесины (деготь). Промышленный способ получения самого фенола С6Н5ОН основан на окислении ароматического углеводорода кумола (изопропилбензол) кислородом воздуха с последующим разложением получающейся гидроперекиси, разбавленной H3SO4 (рис. 8А). Реакция проходит с высоким выходом и привлекательна тем, что позволяет получить сразу два технически ценных продукта – фенол и ацетон. Другой способ – каталитический гидролиз галогензамещенных бензолов (рис. 8Б).

Рис. 8. СПОСОБЫ ПОЛУЧЕНИЯ ФЕНОЛА

Применение фенолов.

Раствор фенола используют в качестве дезинфицирующего средства (карболовая кислота). Двухатомные фенолы – пирокатехин, резорцин (рис. 3), а также гидрохинон (пара-дигидроксибензол) применяют как антисептики (антибактериальные обеззараживающие вещества), вводят в состав дубителей для кожи и меха, как стабилизаторы смазочных масел и резины, а также для обработки фотоматериалов и как реагенты в аналитической химии.

В виде отдельных соединений фенолы используются ограниченно, зато их различные производные применяют широко. Фенолы служат исходными соединениями для получения разнообразных полимерных продуктов – феноло-альдегидных смол (рис. 7), полиамидов, полиэпоксидов. На основе фенолов получают многочисленные лекарственные препараты, например, аспирин, салол, фенолфталеин, кроме того, красители, парфюмерные продукты, пластификаторы для полимеров и средства защиты растений.

Тест № 5 Фенолы

1. Сколько существует фенолов состава С 7 Н 8 О? 1)Один 2) Четыре 3) Три 4) два

2. Атом кислорода в молекуле фенола образует

1) одну σ-связь 2) две σ-связи 3) одну σ- и одну π-связи 4) две π-связи

3. Фенолы - более сильные кислоты, чем алифатические спирты потому, что...

1) между молекулами спирта образуется прочная водо­родная связь

2) в молекуле фенола больше массовая доля ионов водо­рода

3) в фенолах электронная система смещена в сторону атома кислорода, что приводит к большей подвижно­сти атомов водорода бензольного кольца

4) в фенолах электронная плотность связи О-Н умень­шается из-за взаимодействия неподеленной электрон­ной пары атома кислорода с бензольным кольцом

4. Выберите верное утверждение:

1) фенолы диссоциируют в большей степени, чем спирты;

2) фенолы проявляют основные свойства;

3) фенолы и их производные не обладают токсическим действием;

4) атом водорода в гидроксильной группе фенола не может быть замещен на катион металла под действием оснований.

Свойства

5. Фенол в водном растворе является

1) сильной кислотой 2) слабой кислотой 3) слабым основанием 4) сильным основанием

1. Вещество, реагирующее с Na и NaOH, дающее фиолетовое окрашивание с FeCl 3 – это:

1) фенол; 2) спирт 3) простой эфир; 4) алкан

6. Влияние бензольного кольца на гидроксильную группу в молекуле фенола доказывает реакция фенола с

1) гидроксидом натрия 2) формальдегидом 3) бромной водой 4) азотной кислотой

7. Химическое взаимодействие возможно между веществами, формулы которых:

1) С 6 Н 5 OH и NaCl 2) С 6 Н 5 OH и HCl 3) С 6 Н 5 OH и NaOH 4) С 6 Н 5 ONa и NaOH.

8. Фенол не взаимодействует с

1) метаналем 2) метаном 3) азотной кислотой 4) бромной водой

9. Фенол взаимодействует c

1) соляной кислотой 2) этиленом 3) гидроксидом натрия 4) метаном

10. Фенол не взаимодействует с веществом, формула которого

1)HBr 2)Br 2 3)HNO 3 4)NaOH

11. Фенол не реагирует с 1) НNO 3 2) KОН 3) Вr 2 4) Сu(OH) 2

12. Кислотные свойства наиболее выражены у 1)фенола 2)метанола 3)этанола 4)глицерина

13. При взаимодействии фенола с натрием образуются

1) фенолят натрия и вода 2) фенолят натрия и водород

3) бензол и гидроксид натрия 4) бензоат натрия и водород

14. Установите соответствие между исходными веществами и продуктами, которые преимущественно образуются при их взаимодействии.

ИСХОДНЫЕ ВЕЩЕСТВА ПРОДУКТЫ ВЗАИМОДЕЙСТВИЯ

А) С 6 Н 5 ОН + К 1) 2,4,6-трибромфенол + НВr

Б) С 6 Н 5 ОН + КОН 2) 3,5-дибромфенол + НВr

В) С 6 Н 5 ОН + НNО3 3) фенолят калия + Н 2

Г) С 6 Н 5 ОН + Вr 2 (р-р) 4) 2,4,6-тринитрофенол + H 2 O

5) 3,5-динитрофенол + НNO 3

6) фенолят калия + Н 2 О

15. Установите соответствие между исходными веще­ствами и продуктами реакции.

ИСХОДНЫЕ ВЕЩЕСТВА ПРОДУКТЫ РЕАКЦИИ

А) С 6 Н 5 ОН + Н 2 1) С 6 Н 6 + Н 2 О

Б) С 6 Н 5 ОН + К 2) С 6 Н 5 ОК + Н 2 О

В) С 6 Н 5 ОН + КОН 3) С 6 Н 5 ОН + КНСО 3

Г) С 6 Н 5 ОК + Н 2 О + СО 2 4) С 6 Н 11 ОН

5) С 6 Н 5 ОК + Н 2

6) С 6 Н 5 СООН + КОН

16. Фенол взаимодействует с растворами

3) [Аg(NH 3) 2 ]OH

17. Фенол реагирует с

1) кислородом

2)бензолом

3) гидроксидом натрия

4) хлороводородом

5) натрием

6) оксидом кремния (IV)

Получение

18. При замещении водорода в ароматическом кольце на гидроксильную группу образуется:

1) сложный эфир; 2) простой эфир; 3) предельный спирт; 4) фенол.

19. Фенол может быть получен в реакции

1) дегидратации бензойной кислоты 2) гидрирования бензальдегида

3) гидратации стирола 4) хлорбензола с гидроксидом калия

Взаимосвязь, качественные реакции.

20. Метанол. этиленгликоль и глицерин являются:

1)гомологами; 2)первичным, вторичным и третичным спиртами;

32)изомерами; 4) одноатомным, двухатомным, трехатомным спиртами

21. Вещество, не реагирующее ни с Na, ни с NaOH, получаемое при межмолекулярной дегидратации спиртов - это: 1) фенол 2) спирт 3) простой эфир; 4) алкен

22.Взаимодействуют между собой

1)этанол и водород 2)уксусная кислота и хлор

3)фенол и оксид меди (II) 4)этиленгликоль и хлорид натрия

23.Вещество Х может реагировать с фенолом, но не реагирует с этанолом. Это вещество:

1)Na 2) O 2 3)HNO 3 4)бромная вода

24. Ярко-синий раствор образуется при взаимодейст­вии гидроксида меди (II) с

1)этанолом 2) глицерином 3) этаналем 4) толуолом

25. Гидроксид меди (II) может быть использован для обнаружения

1) ионов Аl 3+ 2)этанола 3) ионов NO 3 - 4) этиленгликоля

26. В схеме превращений C 6 H 12 O 6 à X à C 2 H 5 -O- C 2 H 5 веществом «Х» является

1) C 2 H 5 OH 2) C 2 H 5 COOH 3) CH 3 COOH 4) C 6 H 11 OH

27.В схеме превращений этанол à Х à бутан веществом Х является

1)бутанол-1 2)бромэтан 3)этан 4)этилен

28. В схеме превращений пропанол-1 à Х à пропанол-2 веществом Х является

1) 2-хлорпропан 2) пропановая кислота 3) пропин 4) пропен

29.Водные растворы этанола и глицерина можно различить с помощью:

1)бромной воды 2)аммиачного раствора оксида серебра

4) металлического натрия 3)свежеприготовленного осадка гидроксида меди (II);

30. Отличить этанол от этиленгликоля можно с помощью:

31. Отличить фенол от метанола можно с помощью:

1) натрия; 2) NaOH; 3) Cu(OH) 2 4) FeCl 3

32. Отличить фенол от простого эфира можно с помощью:

1) Cl 2 2) NaOH 3) Cu(OH) 2 4) FeCl 3

33. Отличить глицерин от пропанола-1 можно с помощью:

1) натрия 2)NaOH 3) Cu(OH) 2 4) FeCl 3

34. Какое вещество надо использовать для того, чтобы в ла­бораторных условиях отличить друг от друга этанол и этиленгликоль?

1) Натрий 2) Соляную кислоту 3) Гидроксид меди (II) 4) Гидроксид натрия

Спирты - крупная группа органических химических веществ. Она включает подклассы одноатомных и многоатомных спиртов, а также все вещества комбинированного строения: альдегидоспирты, производные фенола, биологические молекулы. Эти вещества вступают в множество типов реакций как по гидроксильной группе, так и по атому углерода, несущему ее. Эти химические свойства спиртов следует изучить детально.

Виды спиртов

В веществах спиртов содержится гидроксильная группа, присоединенная к несущему углеродному атому. В зависимости от количества атомов углерода, с которыми соединен несущий С, спирты делятся на:

  • первичные (соединенные с концевым углеродом);
  • вторичные (соединены с одной гидроксильной группой, одним водородом и двумя углеродными атомами);
  • третичные (соединены с тремя углеродными атомами и одной гидроксильной группой);
  • смешанные (многоатомные спирты, в которых имеются гидроксильные группы у вторичных, первичных или третичных углеродных атомов).

Также спирты делятся в зависимости от количества гидроксильных радикалов на одноатомные и многоатомные. Первые содержат только одну гидроксильную группу у несущего углеродного атома, к примеру, этанол. Многоатомные спирты содержат две и более гидроксильные группы у разных несущих углеродных атомов.

Химические свойства спиртов: таблица

Наиболее удобно подать интересующий нас материал посредством таблицы, которая отражает общие принципы реакционной способности спиртов.

Реакционная связь, тип реакции

Реагент

Продукт

Связь О-Н, замещение

Активный металл, гидрид активного металла, щелочь или амиды активных металлов

Алкоголяты

Связь С-О и О-Н, межмолекулярная дегидратация

Спирт при нагревании в кислой среде

Простой эфир

Связь С-О и О-Н, внутримолекулярная дегидратация

Спирт при нагревании над концентрированной серной кислотой

Непредельный углеводород

Связь С-О, замещение

Галогеноводород, тионилхлорид, квазифосфониевая соль, галогениды фосфора

Галогеналканы

Связь С-О - окисление

Доноры кислорода (перманганат калия) с первичным спиртом

Альдегид

Связь С-О - окисление

Доноры кислорода (перманганат калия) с вторичным спиртом

Молекула спирта

Кислород (горение)

Углекислый газ и вода.

Реакционная способность спиртов

Благодаря наличию в молекуле одноатомного спирта углеводородного радикала - связи С-О и связи О-Н - данный класс соединений вступает в многочисленные химические реакции. Они определяют химические свойства спиртов и зависят от реакционной способности вещества. Последняя, в свою очередь, зависит от длины углеводородного радикала, присоединенного у несущему углеродному атому. Чем он больше, тем ниже полярность связи О-Н, из-за чего реакции, идущие с отщеплением водорода от спирта, будет протекать медленнее. Это же снижает константу диссоциации упомянутого вещества.

Химические свойства спиртов также зависят от количества гидроксильных групп. Одна смещает электронную плотность на себя вдоль сигма-связей, что увеличивает реакционную способность по О-Н группе. Поскольку это поляризует связь С-О, то реакции с ее разрывом идут активнее у спиртов, у которых имеется две и более О-Н групп. Потому многоатомные спирты, химические свойства которых более многочисленные, охотнее вступают в реакции. Также они содержат несколько спиртовых групп, из-за чего свободно могут вступать в реакции по каждой из них.

Типичные реакции одноатомных и многоатомных спиртов

Типичные химические свойства спиртов проявляются только в реакции с активными металлами, их основаниями и гидридами, кислотами Льюиса. Также типичными являются взаимодействия с галогенводородами, галогенидами фосфора и прочими компонентами с получением галогеналканов. Также спирты являются и слабыми основаниями, потому вступают в реакции с кислотами, образуя при этом галогенводороды и сложные эфиры неорганических кислот.

Простые эфиры образуются из спиртов при межмолекулярной дегидратации. Эти же вещества вступают в реакции дегидрирования с образованием альдегидов из первичного спирта и кетонов из вторичного. Третичные спирты в подобные реакции не вступают. Также химические свойства этилового спирта (и других спиртов) оставляют возможность полного их окисления кислородом. Это простая реакция горения, сопровождающаяся выделением воды с углекислым газом и некоторого количества тепла.

Реакции по атому водорода связи О-Н

Химические свойства одноатомных спиртов допускают разрыв связи О-Н и отщепление водорода. Эти реакции протекают при взаимодействии с активными металлами и их основаниями (щелочами), с гидридами активных металлов, а также с кислотами Льюиса.

Также спирты активно вступают в реакции со стандартными органическими и неорганическими кислотами. В данном случае продуктов реакции является сложный эфир или галогенуглеводород.

Реакции синтеза галогеналканов (по связи С-О)

Галогеналканы - это типичные соединения, которые могут быть получены из спиртов при протекании нескольких типов химических реакций. В частности, химические свойства одноатомных спиртов позволяют вступать во взаимодействие с галогенводородами, с галогенидами трех- и пятивалентного фосфора, квазифосфониевыми солями, тионилхлоридом. Также галогеналканы из спиртов могут быть получены промежуточным путем, то есть синтезом алкилсульфоната, который позже вступит в реакцию замещения.

Пример первой реакции с галогенводородом указан на графическом приложении выше. Здесь бутиловый спирт реагирует с хлоридом водорода с образованием хлорбутана. В общем, класс соединений, содержащих хлор и углеводородный насыщенный радикал, называется алкилхлоридом. Побочным продуктом химического взаимодействия является вода.

Реакции с получением алкилхлорида (йодида, бромида или фторида) достаточно многочисленные. Типичный пример - взаимодействие с трибромидом фосфора, пентахлоридом фосфора и прочими соединениями данного элемента и его галогенидов, перхлоридов и перфторидов. Они протекают по механизму нуклеофильного замещения. С тионилхлоридом спирты реагируют также с образованием хлоралкана и выделением SO 2 .

Наглядно химические свойства одноатомных предельных спиртов, содержащих насыщенный углеводородный радикал, представлены в виде реакций на иллюстрации ниже.

Спирты легко взаимодействуют с квазифосфониевой солью. Однако данная реакция наиболее выгодна при протекании у одноатомных вторичных и третичных спиртов. Они региоселективны, позволяют "имплантировать" галогеновую группу в строго определенное место. Продукты таких реакций получаются с высокой массовой долей выхода. А многоатомные спирты, химические свойства которых несколько отличаются от таковых у одноатомных, могут изомеризоваться в ходе реакции. Потому получение целевого продукта затрудняется. Пример реакции на изображении.

Внутримолекулярная и межмолекулярная дегидратация спиртов

Гидроксильная группа, расположенная у несущего углеродного атома, может отщепляться при помощи сильных акцепторов. Так протекают реакции межмолекулярной дегидратации. При взаимодействии одной молекулы спирта с другой в растворе концентрированной серной кислоты молекула воды отщепляется от обеих гидроксильных групп, радикалы которых соединяются в молекулу простого эфира. При межмолекулярной дегидратации этаналя можно получить диоксан - продукт дегидратации по четырем гидроксильным группам.

При внутримолекулярной дегидратации продуктом является алкен.

4. Получение этанола спиртовым брожением сахаристых веществ:

С 6 Н 12 О 6 2CH 3 –CH 2 –ОН + 2СО 2 .

(глюкоза)

5. Получение метанола из синтез-газа (смеси СО и Н 2):

СО + 2Н 2 CH 3 –ОН.

Многоатомные предельные спирты

Многоатомные спирты содержат несколько гидроксильных групп, присоединенных к разным атомам углерода. Присоединение нескольких гидроксильных групп к одному атому углерода невозможно, так как при этом происходит процесс дегидратации и образуется соответствующий альдегид или карбоновая кислота:

Примеры многоатомных спиртов:

Многоатомные спирты содержат асимметрические атомы углерода и обладают оптической изомерией.

В качестве примера циклических спиртов можно привести шестиатомные циклические спирты С 6 Н 6 (ОН) 6 – инозиты, один из изомеров которых (мезоинозит) входит в состав фосфолипидов:

Химические свойства многоатомных спиртов

1. Кислотные свойства

Многоатомные спирты обладают большими кислотными свойствами по сравнению с одноатомными спиртами, что объясняется взаимным влиянием функциональных групп:

гликолят натрия

2. Качественная реакция на многоатомные спирты – взаимодействие со свежеосажденным гидроксидом меди(II):

3. Образование полных и неполных эфиров с неорганическими и органическими кислотами:

;

(нитроглицерин);

.

4. Дегидратация многоатомных спиртов

Получение многоатомных спиртов

1. Гидролиз дигалогеноалканов:

Br–CH 2 –CH 2 –Br + 2KOH НО–CH 2 –CH 2 –ОН + 2KBr.

2. Окисление алкенов водным раствором перманганата калия (реакция Вагнера):

3CH 2 =CH 2 +2KMnO 4 +4H 2 O®3HO–CH 2 –CH 2 –OH+2MnO 2 ¯+2KOH.

3. Получение глицерина:

(гидролиз жиров)

ФЕНОЛЫ

Фено́лы - органические соединения ароматического ряда, в молекулах которых гидроксильные группы связаны с атомами углерода ароматического кольца. По числу ОН-групп различают:

· одноатомные фенолы (аренолы): фенол (C 6 H 5 OH) и его гомологи:

фенол орто -крезол мета -крезол пара -крезол
Еще один изомер состава С 7 Н 7 ОН, бензиловый спирт, не относится к фенолам, так как функциональная группа не присоединена непосредственно к ароматической системе. Гидроксильная группа может быть присоединена и к более сложным ароматическим системам, например,
бензиловый спирт a-нафтол b-нафтол
  • двухатомные фенолы (арендиолы):
  • трехатомные фенолы (арентриолы):

Для фенола и его гомологов возможны два типа изомерии: изомерия положения заместителей в бензольном кольце и изомерия боковой цепи (строения алкильного радикала и числа радикалов).

Физические свойства.

Фенол – бесцветное кристаллическое вещество, розовеющее на воздухе. Обладает характерным запахом. Хорошо растворяется в воде, этаноле, ацетоне и других органических растворителях. Раствор фенола в воде – карболовая кислота. Другие фенолы – бесцветные кристаллические вещества или жидкости, температуры кипения которых выше температур кипения предельных спиртов с такими же молярными массами. Фенолы малорастворимы в воде, хорошо растворяются в органических растворителях, токсичны.

Химические свойства.

Для структуры фенола характерно взаимодействие неподеленной пары электронов атома кислорода и p-электронов ароматического кольца. Результатом этого является смещение электронной плотности с гидроксильной группы на кольцо, при этом связь О–Н становится более полярной, а значит, менее прочной (фенолы проявляют свойства слабых кислот).

Гидроксильная группа по отношению к бензольному кольцу является заместителем I рода, ориентируя реакции замещения в орто- и пара-положения.

Реакции фенола можно разделить на две группы: реакции с участием функциональной группы и реакции с участием ароматического кольца.

Реакции по гидроксильной группе

1. Кислотные свойства:

2C 6 H 5 OH + 2Na ® H 2 ­ + 2C 6 H 5 ONa (фенолят натрия);

C 6 H 5 OH + NaOH ® C 6 H 5 ONa + H 2 O;

C 6 H 5 ONa + H 2 O + CO 2 ® C 6 H 5 OH + NaHCO 3

(кислотные свойства фенола слабее, чем угольной кислоты);

Фиолетовое окрашивание растворов в присутствии хлорида железа(III) – качественная реакция на фенолы.

В том случае, когда гидроксильная группа не связана непосредственно с ароматическим циклом, а находится в составе заместителя, влияние бензольного кольца на функциональную группу ослабевает и кислотные свойства не проявляются (класс ароматических спиртов). Например, бензиловый спирт реагирует с натрием и не реагирует с NaOH.

2. Образование сложных и простых эфиров (в отличие от спиртов фенолы не реагируют с карбоновыми кислотами, сложные эфиры получают косвенным путем – из хлорангидридов кислот и фенолятов): С 6 Н 5 ОН + СН 3 СООН ¹

C 6 H 5 ONa + R–Br ® C 6 H 5 OR + NaBr

3. Окисление (фенолы легко окисляются даже под действием кислорода воздуха, поэтому при стоянии постепенно окрашиваются в розовый цвет):

бензохинон

Реакции по бензольному кольцу.

1. Галогенирование:

(в отличие от бензола и его гомологов фенол обесцвечивает бромную воду).

2. Нитрование:

Тринитрофенол (пикриновая кислота) – кристаллическое вещество желтого цвета, по силе приближается к неорганическим кислотам).

3. Поликонденсация (взаимодействие с формальдегидом и образование фенолформальдегидных смол):

Получение фенола

3. Перегонка каменноугольной смолы.

4. Получение фенола из галогенбензолов:

С 6 Н 5 Сl + 2NaOH C 6 H 5 ONa + NaCl + H 2 O;

C 6 H 5 ONa + HCl ® C 6 H 5 OH + NaCl.

5. Каталитическое окисление изопропилбензола (кумола) – кумольный метод:

АЛЬДЕГИДЫ И КЕТОНЫ

Альдегиды и кетоны относятся к карбонильным соединениям и содержат карбонильную группу . В альдегидах карбонильная группа обязательно связана с атомом водорода (находится в положении 1 углеродной цепи), в кетонах она расположена в середине цепи и связана с двумя атомами углерода. Общая формула альдегидов и кетонов С 2 H 2 n O (межклассовые изомеры). Для альдегидов существует только изомерия углеродного скелета, для кетонов – изомерия углеродного скелета и изомерия положения функциональной группы.

Номенклатура альдегидов и кетонов:

метаналь (формальдегид или муравьиный альдегид) этаналь (ацетальдегид или уксусный альдегид) пропаналь (пропионовый альдегид)
бутаналь (масляный альдегид) метилпропаналь (изомасляный альдегид) пропеналь (акролеин)
пропанон (диметилкетон или ацетон) бутанон (метилэтилкетон) пентанон-1 (метилпропилкетон)
пентанон-2 (диэтилкетон) метилбутанон (метилизопропил кетон) метилфенилкетон (ацетофенон)
бензойный альдегид дифенилкетон (бензофенон)

Физические свойства

Формальдегид при комнатной температуре – газ, температура кипения ацетальдегида +20°С. Температуры кипения альдегидов ниже, чем температуры кипения соответствующих спиртов (отсутствуют водородные связи между молекулами). Ацетон и его ближайшие гомологи – жидкости, легче воды. Альдегиды и кетоны легко летучи и имеют резкий запах. Раствор формальдегида в воде – формалин.

Химические свойства

Атом углерода карбонильной группы находится в состоянии sp 2 -гибридизации (плоский фрагмент). Электроны двойной связи сильно смещены в сторону более электроотрицательного атома кислорода (связь С=О полярная). Перераспределение зарядов в карбонильной группе оказывает влияние на полярность С–Н связей соседнего с карбонильной группой атома углерода (a-положение):

Для альдегидов и кетонов характерны реакции присоединения по двойной связи карбонильной группы и реакции замещения атома водорода у a-атома углерода на галоген. Кроме того, альдегиды способны окисляться по атому водорода при карбонильной группе.

Реакции присоединения по двойной связи С=О группы (нуклеофильное присоединение S N)

В связи с тем, что связь С=О альдегидов и кетонов имеет полярный характер, она легко разрывается под действием полярных молекул типа Н–Х. В общем виде реакцию можно представить в виде:

1. Присоединение водорода (восстановление альдегидов и кетонов до первичных и вторичных спиртов):

2. Присоединение воды (гидратация) – обратимый процесс (гидраты устойчивы только в водных растворах):

Метаналь в водных растворах гидратирован на 100%, этаналь – на 50%, ацетон практически не гидратирован.

3. Присоединение спиртов:

(полуацеталь); (ацеталь).

4. Присоединение гидросульфита натрия (реакция служит для выделения альдегидов и кетонов из смесей с другими органическими веществами):

.

5. Присоединение аммиака (H–NH 2) и аминов (H–NHR):

Особым образом происходит присоединение аммиака к уксусному и муравьиному альдегидам:

(гексаметилентетрамин – уротропин, дезинфицирующее средство в урологии при воспалении мочевых путей)

5. Присоединение гидразина (H 2 N–NH 2) и фенилгидразина (H 2 N–NH–С 6 H 5).

Многоатомные спирты – органические соединения, в молекулах которых содержится несколько гидроксильных групп (-ОН), соединённых с углеводородным радикалом

Гликоли (диолы)

  • Сиропообразная, вязкая бесцветная жидкость, имеет спиртовой запах, хорошо смешивается с водой, сильно понижает температуру замерзания воды(60%-ый раствор замерзает при -49 ˚С) –это используется в системах охлаждения двигателей – антифризы.
  • Этиленгликоль токсичен – сильный Яд! Угнетает ЦНС и поражает почки.

Триолы

  • Бесцветная, вязкая сиропообразная жидкость, сладкая на вкус. Не ядовит. Без запаха. Хорошо смешивается с водой.
  • Распространён в живой природе. Играет важную роль в обменных процессах, так как входит в состав жиров (липидов) животных и растительных тканей.

Номенклатура

В названиях многоатомных спиртов (полиолов ) положение и число гидроксильных групп указывают соответствующими цифрами и суффиксами -диол (две ОН-группы), -триол (три ОН-группы) и т.д. Например:

Получение многоатомных спиртов

I . Получение двухатомных спиртов

В промышленности

1. Каталитическая гидратация оксида этилена (получение этиленгликоля):

2. Взаимодействие дигалогенпроизводных алканов с водными растворами щелочей :

3. Из синтез-газа :

2CO + 3H 2 250°,200 МПа ,kat →CH 2 (OH)-CH 2 (OH)

В лаборатории

1. Окисление алкенов :

II . Получение трёхатомных спиртов (глицерина)

В промышленности

Омыление жиров (триглицеридов):

Химические свойства многоатомных спиртов

Кислотные свойства

1. С активными металлами:

HO-CH 2 -CH 2 -OH + 2Na → H 2 + NaO-CH 2 -CH 2 -ONa (гликолят натрия)

2. С гидроксидом меди( II ) – качественная реакция!


Упрощённая схема

Основные свойства

1. С галогенводородными кислотами

HO-CH 2 -CH 2 -OH + 2HCl H+ ↔ Cl-CH 2 -CH 2 -Cl + 2H 2 O

2. С азотной кислотой

Т ринитроглицерин - основа динамита

Применение

  • Этиленгликоль производства лавсана , пластмасс , и для приготовления антифризов - водных растворов, замерзающих значительно ниже 0°С (использование их для охлаждения двигателей позволяет автомобилям работать в зимнее время); сырьё в органическом синтезе.
  • Глицерин широко используется в кожевенной, текстильной промышленности при отделке кож и тканей и в других областях народного хозяйства. Сорбит (шестиатомный спирт) используется как заменитель сахара для больных диабетом. Глицерин находит широкое применение в косметике , пищевой промышленности , фармакологии , производстве взрывчатых веществ . Чистый нитроглицерин взрывается даже при слабом ударе; он служит сырьем для получения бездымных порохов и динамита ― взрывчатого вещества, которое в отличие от нитроглицерина можно безопасно бросать. Динамит был изобретен Нобелем, который основал известную всему миру Нобелевскую премию за выдающиеся научные достижения в области физики, химии, медицины и экономики. Нитроглицерин токсичен, но в малых количествах служит лекарством , так как расширяет сердечные сосуды и тем самым улучшает кровоснабжение сердечной мышцы.

Напомним, что многоатомные спирты – это органические соединения, в молекулах которых содержится несколько гидроксильных групп. Общая формула многоатомных спиртов — C n H 2n+1 (OH) k , где n и k – целые числа более 2. Классификация, строение, изомерия и номенклатура спиртов рассмотрены раннее в . В настоящем разделе рассмотрим свойства и получение многоатомных спиртов.

Важнейшие представители многоатомных спиртов содержат от двух до шести гидроксильных групп. Двухатомные спирты (гликоли) или алкандиолы, содержащие две гидроксильные группы в своей молекуле, трехатомные спирты (алкантриолы) – три гидроксильные группы. Четырех-, пяти- и шестиатомные спирты (эритриты, пентиты и гекситы) содержат 4, 5 и 6 ОН-групп соответственно.

Физические свойства многоатомных спиртов

Многоатомные спирты хорошо растворяются в воде и спиртах, хуже в других органических растворителях. Спирты с небольшим числом углеродных атомов представляют собой вязкие сладковатые на вкус жидкости. Высшие члены ряда — твердые вещества. По сравнению с одноатомными спиртами они имеют более высокие плотности и температуры кипения. Тривиальные названия, названия по и физические свойства некоторых спиртов представлены в таблице:


Получение многоатомных спиртов

Получение гликолей

Гликоли могут быть получены практически всеми Выделим основные:

  1. Гидролиз дигалогенпроизводных алканов :
  2. Гидролиз хлоргидринов протекает следующим образом:
  3. Восстановление сложных эфиров двухосновных кислот по методу Буво:
  4. по Вагнеру:
  5. Неполное восстановление кетонов под действием магния (в присутствии йода). Таким образом получают пинаконы:

Получение глицерина

  1. Хлорирование пропилена по Львову:
  2. Способ Береша и Якубовича состоит в окислении пропилена в акролеин, который затем восстанавливают до аллилового спирта с последующим его гидроксилированием:
  3. Каталитическое гидрирование глюкозы приводит к восстановлению альдегидной группы и одновременно разрыв С3-С4 связи:

За счет разрыва С2-С3 связи образуется небольшое количество этиленгликоля и треита (стереоизомер эритрита).

Помимо глюкозы каталитическому гидрированию можно подвергнуть и другие полисахариды, содержащие глюкозные звенья, например, целлюлозу.

4. Гидролиз жиров щелочью проводят с целью получения мыла (калиевые или натриевые соли сложных карбоновых кислот):
Такой процесс называется омылением .

Получение четырехатомных спиртов (эритритов)

В природе эритрит (бутантетраол-1,2,3,4) содержится как в свободном виде, так и виде сложных эфиров в водорослях и некоторых плесневых грибах.

Искусственно его получают из бутадиена-1,4 в несколько стадий:

Пентаэритрит (тетраоксинеопентан) в природе не встречаются. Синтетически можно получить при взаимодействии формальдегида с водным раствором ацетальдегида в щелочной среде:

Химические свойства многоатомных спиртов

Химические свойства многоатомных спиртов сходны со . Однако наличие в молекулах многоатомных спиртов нескольких гидроксильных групп увеличивает их кислотность . Поэтому они могут вступать в реакции с щелочами и с гидроксидами тяжелых металлов, образуя соли.



Замещение второй гидроксогруппы этиленгликоля происходит труднее (под действием РСl5 или SOCl2 – замещение происходит легче).

  1. Взаимодействие с кислотами ведет к образованию сложных эфиров:

Взаимодействие с азотной кислотой

Данные соединения являются взрывчатыми веществами. Тринитроглицерин, кроме этого, используют в медицине в качестве лечебного препарата.

Взаимодействие с уксусной кислотой

Если в реакции этерификации этиленгликоля участвует двухосновная кислота , то возможно получение полиэфира (реакция поликонденсации) :

Обычно в качестве R выступает терефталевая кислота. Продуктом такой реакции является терилен, лавсан :

При дегидратации этиленгликоля получается соединение, имеющее 2 таутомерные формы (кето-енольная таутомерия):

Дегидратация этиленгликоля может происходить с одновременной его димеризацией:

При дегидратации 1,4-бутандиола можно получить тетрагидрофуран (оксолан):

Дегидратация других гликолей сопровождается процессом пинаколиновой перегруппировки :

  • Окисление многоатомных спиртов приводит к образованию альдегидов или кетонов.

При окислении этиленгликоля вначале получается гликолевый альдегид, далее глиоксаль, который при дальнейшем окислении переходит в дикарбоновую кислоту:

При окислении глицерина образуется смесь соответствующего альдегида и кетона:

Категории ,


© 2024
seagun.ru - Сделай потолок. Освещение. Электропроводка. Карниз