16.09.2020

Кимване и кимване на три или повече числа. Кимване и не на три или повече числа 2 и 3 общи кратни



Представеният по-долу материал е логично продължение на теорията от статията под заглавие LCM - най-малко общо кратно, определение, примери, връзка между LCM и GCD. Тук ще говорим за намиране на най-малкото общо кратно (LCM), и обърнете специално внимание на решаването на примери. Нека първо покажем как LCM на две числа се изчислява по отношение на GCD на тези числа. След това обмислете намирането на най-малкото общо кратно чрез разлагане на числа на прости множители. След това ще се съсредоточим върху намирането на LCM на три или повече числа и също ще обърнем внимание на изчисляването на LCM на отрицателни числа.

Навигация в страницата.

Изчисляване на най-малкото общо кратно (LCM) чрез gcd

Един от начините за намиране на най-малкото общо кратно се основава на връзката между LCM и GCD. Съществуващата връзка между LCM и GCD ви позволява да изчислите най-малкото общо кратно на две положителни цели числа чрез известния най-голям общ делител. Съответната формула има формата LCM(a, b)=a b: GCM(a, b) . Помислете за примери за намиране на LCM според горната формула.

Пример.

Намерете най-малкото общо кратно на двете числа 126 и 70.

Решение.

В този пример a=126 , b=70 . Нека използваме връзката между LCM и GCD, изразена с формулата LCM(a, b)=a b: GCM(a, b). Тоест първо трябва да намерим най-големия общ делител на числата 70 и 126, след което можем да изчислим НОК на тези числа по написаната формула.

Намерете gcd(126, 70), като използвате алгоритъма на Евклид: 126=70 1+56 , 70=56 1+14 , 56=14 4 , следователно gcd(126, 70)=14 .

Сега намираме необходимото най-малко общо кратно: LCM(126, 70)=126 70: GCM(126, 70)= 126 70:14=630 .

Отговор:

LCM(126, 70)=630.

Пример.

Какво е LCM(68, 34)?

Решение.

защото 68 се дели равномерно на 34, тогава gcd(68, 34)=34. Сега изчисляваме най-малкото общо кратно: LCM(68, 34)=68 34: LCM(68, 34)= 68 34:34=68 .

Отговор:

LCM(68, 34)=68.

Обърнете внимание, че предишният пример отговаря на следното правило за намиране на LCM за цели положителни числа a и b: ако числото a се дели на b, тогава най-малкото общо кратно на тези числа е a.

Намиране на LCM чрез разлагане на числа на прости множители

Друг начин за намиране на най-малкото общо кратно се основава на разлагането на числата на прости множители. Ако направим произведение на всички прости множители на тези числа, след което изключим от това произведение всички общи прости множители, които присъстват в разширенията на тези числа, тогава полученият продукт ще бъде равен на най-малкото общо кратно на тези числа.

Обявеното правило за намиране на LCM следва от равенството LCM(a, b)=a b: GCM(a, b). Наистина, произведението на числата a и b е равно на произведението на всички множители, включени в разширенията на числата a и b. На свой ред, gcd(a, b) е равно на произведението на всички прости множители, които присъстват едновременно в разширенията на числата a и b (което е описано в раздела за намиране на gcd с помощта на разлагането на числа на прости множители ).

Да вземем пример. Нека знаем, че 75=3 5 5 и 210=2 3 5 7 . Съставете произведението на всички множители на тези разширения: 2 3 3 5 5 5 7 . Сега изключваме от този продукт всички множители, които присъстват както в разгръщането на числото 75, така и в разгръщането на числото 210 (такива множители са 3 и 5), тогава произведението ще приеме формата 2 3 5 5 7 . Стойността на този продукт е равна на най-малкото общо кратно на числата 75 и 210, т.е. LCM(75, 210)= 2 3 5 5 7=1 050.

Пример.

След като разложите числата 441 и 700 на прости множители, намерете най-малкото общо кратно на тези числа.

Решение.

Нека разложим числата 441 и 700 на прости множители:

Получаваме 441=3 3 7 7 и 700=2 2 5 5 7 .

Сега нека направим произведение на всички фактори, включени в разширенията на тези числа: 2 2 3 3 5 5 7 7 7 . Нека изключим от този продукт всички фактори, които присъстват едновременно в двете разширения (има само един такъв фактор - това е числото 7): 2 2 3 3 5 5 7 7 . По този начин, LCM(441, 700)=2 2 3 3 5 5 7 7=44 100.

Отговор:

LCM(441, 700)= 44 100 .

Правилото за намиране на LCM с помощта на разлагането на числата на прости множители може да се формулира малко по-различно. Ако добавим липсващите множители от разлагането на числото b към множителите от разлагането на числото a, тогава стойността на получения продукт ще бъде равна на най-малкото общо кратно на числата a и b.

Например, нека вземем всички едни и същи числа 75 и 210, тяхното разлагане на прости множители е както следва: 75=3 5 5 и 210=2 3 5 7 . Към множителите 3, 5 и 5 от разлагането на числото 75 добавяме липсващите множители 2 и 7 от разлагането на числото 210, получаваме произведението 2 3 5 5 7 , чиято стойност е LCM(75 , 210).

Пример.

Намерете най-малкото общо кратно на 84 и 648.

Решение.

Първо получаваме разлагането на числата 84 и 648 на прости множители. Те изглеждат като 84=2 2 3 7 и 648=2 2 2 3 3 3 3 . Към множителите 2, 2, 3 и 7 от разлагането на числото 84 добавяме липсващите множители 2, 3, 3 и 3 от разлагането на числото 648, получаваме произведението 2 2 2 3 3 3 3 7, което е равно на 4 536 . Така желаното най-малко общо кратно на числата 84 и 648 е 4536.

Отговор:

LCM(84, 648)=4 536 .

Намиране на LCM на три или повече числа

Най-малкото общо кратно на три или повече числа може да се намери чрез последователно намиране на LCM на две числа. Спомнете си съответната теорема, която дава начин да се намери LCM на три или повече числа.

Теорема.

Нека са дадени положителни цели числа a 1 , a 2 , …, a k, най-малкото общо кратно m k на тези числа се намира в последователното изчисление m 2 = LCM (a 1 , a 2) , m 3 = LCM (m 2 , a 3) , … , m k =LCM(m k−1 , a k) .

Разгледайте приложението на тази теорема на примера за намиране на най-малкото общо кратно на четири числа.

Пример.

Намерете LCM на четирите числа 140, 9, 54 и 250.

Решение.

В този пример a 1 =140, a 2 =9, a 3 =54, a 4 =250.

Първо намираме m 2 \u003d LCM (a 1, a 2) \u003d LCM (140, 9). За да направим това, използвайки Евклидовия алгоритъм, ние определяме gcd(140, 9) , имаме 140=9 15+5 , 9=5 1+4 , 5=4 1+1 , 4=1 4 , следователно gcd( 140, 9)=1 , откъдето LCM(140, 9)=140 9: LCM(140, 9)= 140 9:1=1 260 . Тоест m 2 =1 260 .

Сега намираме m 3 \u003d LCM (m 2, a 3) \u003d LCM (1 260, 54). Нека го изчислим чрез gcd(1 260, 54) , което също се определя от алгоритъма на Евклид: 1 260=54 23+18 , 54=18 3 . Тогава gcd(1 260, 54)=18 , откъдето LCM(1 260, 54)= 1 260 54:gcd(1 260, 54)= 1 260 54:18=3 780 . Тоест m 3 \u003d 3 780.

Остава да се намери m 4 \u003d LCM (m 3, a 4) \u003d LCM (3 780, 250). За да направим това, намираме НОД(3 780, 250) с помощта на алгоритъма на Евклид: 3 780=250 15+30 , 250=30 8+10 , 30=10 3 . Следователно gcd(3 780, 250)=10, откъдето gcd(3 780, 250)= 3 780 250:gcd(3 780, 250)= 3 780 250:10=94 500 . Тоест m 4 \u003d 94 500.

Така че най-малкото общо кратно на първоначалните четири числа е 94 500.

Отговор:

LCM(140, 9, 54, 250)=94 500.

В много случаи най-малкото общо кратно на три или повече числа се намира удобно чрез разлагане на прости множители на дадени числа. В този случай трябва да се спазва следното правило. Най-малкото общо кратно на няколко числа е равно на произведението, което се съставя по следния начин: липсващите множители от разлагането на второто число се добавят към всички множители от разлагането на първото число, липсващите множители от разлагането на третото число се добавя към получените множители и т.н.

Помислете за пример за намиране на най-малкото общо кратно чрез разлагането на числа на прости множители.

Пример.

Намерете най-малкото общо кратно на пет числа 84, 6, 48, 7, 143.

Решение.

Първо, получаваме разширенията на тези числа в прости множители: 84=2 2 3 7 , 6=2 3 , 48=2 2 2 2 3 , 7 прости множители) и 143=11 13 .

За да намерите LCM на тези числа, към множителите на първото число 84 (те са 2 , 2 , 3 и 7 ) трябва да добавите липсващите множители от разгръщането на второто число 6 . Разгръщането на числото 6 не съдържа липсващи множители, тъй като и 2, и 3 вече присъстват в разгръщането на първото число 84. Допълнително към множителите 2, 2, 3 и 7 добавяме липсващите множители 2 и 2 от разгръщането на третото число 48, получаваме набор от множители 2, 2, 2, 2, 3 и 7. Няма нужда да добавяте фактори към този набор в следващата стъпка, тъй като 7 вече се съдържа в него. Накрая към множителите 2 , 2 , 2 , 2 , 3 и 7 добавяме липсващите множители 11 и 13 от разлагането на числото 143 . Получаваме произведението 2 2 2 2 3 7 11 13 , което е равно на 48 048 .

За да разберете как да изчислите LCM, първо трябва да определите значението на термина "множество".


Кратно на A е естествено число, което се дели без остатък на A. Така 15, 20, 25 и т.н. могат да се считат за кратни на 5.


Може да има ограничен брой делители на определено число, но има безкраен брой кратни.


Общо кратно на естествени числа е число, което се дели на тях без остатък.

Как да намерим най-малкото общо кратно на числа

Най-малкото общо кратно (LCM) на числа (две, три или повече) е най-малкото естествено число, което се дели равномерно на всички тези числа.


За да намерите NOC, можете да използвате няколко метода.


За малки числа е удобно да се изпишат в ред всички кратни на тези числа, докато се намери общо сред тях. Множествата се означават в записа с главна буква K.


Например, кратни на 4 могат да бъдат записани така:


K(4) = (8,12, 16, 20, 24, ...)


K(6) = (12, 18, 24, ...)


И така, можете да видите, че най-малкото общо кратно на числата 4 и 6 е числото 24. Това въвеждане се извършва по следния начин:


LCM(4, 6) = 24


Сега запишете общите множители за двете числа. В нашата версия това са две и пет. В други случаи обаче това число може да бъде една, две или три цифри или дори повече. След това трябва да работите със степени. Изберете най-малката мощност за всеки от факторите. В примера това е две на втора степен и пет на първа.

Накрая просто трябва да умножите получените числа. В нашия случай всичко е изключително просто: две на квадрат, умножено по пет, е равно на 20. По този начин числото 20 може да се нарече най-големият общ множител за 60 и 80.

Подобни видеа

Забележка

Не забравяйте, че простият множител е число, което има само 2 делителя: единица и самото число.

Полезни съвети

В допълнение към този метод можете да използвате и алгоритъма на Евклид. Пълното му описание, представено в геометрична форма, може да се намери в книгата на Евклид "Начала".

Свързана статия

Събирането и изваждането на естествени дроби е възможно само ако те имат еднакъв знаменател. За да не усложнявате изчисленията при привеждането им към общ знаменател, намерете най-малкия общ делител на знаменателите и изчислете.

Ще имаш нужда

  • - способността за разлагане на числото на прости множители;
  • - Умение за работа с дроби.

Инструкция

Запишете събирането на дроби. След това намерете тяхното най-малко общо кратно. За да направите това, изпълнете следната последователност от действия: 1. Представете всеки от знаменателите в прости числа (просто число, число, което се дели само на 1 и самото себе си без остатък, например 2, 3, 5, 7, и т.н.).2. Групирайте всички прости, които са изписани, като посочите техните степени. 3. Изберете най-големите степени на всеки от тези прости множители, които се срещат в тези числа. 4. Умножете написаните степени.

Например, общият знаменател за дроби със знаменатели 15, 24 и 36 ще бъде числото, което изчислявате по следния начин: 15=3 5; 24=2^3 3;36=2^3 3^2 Въведете най-големите степени на всички прости делители на тези числа: 2^3 3^2 5=360.

Разделете общия знаменател на всяка и на знаменателите на добавените дроби. Умножете техните числители по полученото число. Под общата линия на дробта напишете най-малкия общ дивидент, който е и най-малкият общ знаменател. В числителя добавете числата, получени от умножаването на всеки числител по частното на най-малкия общ дивидент по знаменателя на дробта. Сумата от всички числители и разделена на най-малкия общ знаменател ще бъде желаното число.

Например за 15/4, 24/7 и 36/11 направете това. Намерете най-малкия общ знаменател, който е 360. След това разделете на 360/15=24, 360/24=15, 360/36=10. Умножете числото 4, което е числителят на първата дроб, по 24 (4 24=96), числото 7 по 15 (7 15=105), числото 11 по 10 (11 10=110). След това съберете тези числа (96+105+110=301). Получаваме резултата 4/15+7/24+11/36=301/360.

източници:

  • как да намерите най-малкото число

Целите числа са набор от математически числа, които са от голяма полза в Ежедневието. Неотрицателните цели числа се използват при посочване на броя на всякакви обекти, отрицателните числа - в съобщенията за прогноза за времето и т.н. GCD и LCM са естествени характеристики на цели числа, свързани с операциите за деление.

Инструкция

НОД се изчислява лесно с помощта на алгоритъма на Евклид или двоичния метод. Съгласно Евклидовия алгоритъм за определяне на НОД на числата a и b, едно от които не е нула, има такава последователност от числа r_1 > r_2 > r_3 > ... > r_n, в която r_1 е равно на остатъка от разделяйки първото число на второто. А останалите членове на редицата са равни на остатъка от деленето на предишния член на предходния, а предпоследният елемент се дели на последния без остатък.

Математически последователността може да бъде представена като:
a = b*k_0 + r_1
b = r_1*k_1 + r_2
r_1 = r_2*k_2 + r_3

r_(n - 1) = r_n*k_n,
където k_i е цяло число множител.
gcd (a, b) = r_n.

Пример.
Намерете НОД (36, 120). Според алгоритъма на Евклид, извадете кратно на 36 от 120, в този случай това е 120 - 36 * 3 = 12. Сега извадете кратно на 12 от 120, получавате 120 - 12 * 10 = 0. Следователно gcd ( 36, 120) = 12.

Двоичният алгоритъм за намиране на GCD се основава на теорията на изместването. Според този метод НОД на две числа има следните свойства:
gcd(a, b) = 2*gcd(a/2, b/2) за четни a и b
gcd(a, b) = gcd(a/2, b) за четно a и нечетно b (обратно, gcd(a, b) = gcd(a, b/2))
gcd(a, b) = gcd((a - b)/2, b) за нечетно a > b
gcd(a, b) = gcd((b - a)/2, a) за нечетно b > a
Така gcd (36, 120) = 2*gcd (18, 60) = 4*gcd (9, 30) = 4*gcd (9, 15) = 4*gcd ((15 - 9)/2=3, 9) = 4*3 = 12.

Най-малкото общо кратно (LCM) на две цели числа е най-малкото цяло число, което се дели на двете оригинални числа без остатък.
LCM може да се изчисли с помощта на GCD: LCM(a, b) = |a*b|/GCM(a, b).

Вторият начин за изчисляване на LCM е каноничното разлагане на числата на прости множители:
a = r_1^k_1*…*r_n^k_n
b = r_1^m_1*…*r_n^m_n,
където r_i са прости числа, а k_i и m_i са цели числа ≥ 0.
LCM се представя като същите прости множители, където максимумът от две числа се приема като степен.

Пример.
Намерете NOC (16, 20):
16 = 2^4*3^0*5^0
20 = 2^2*3^0*5^1
LCM (16, 20) = 2^4*3^0*5^1 = 16*5 = 80.

Помислете за три начина за намиране на най-малкото общо кратно.

Намиране чрез факторизиране

Първият начин е да се намери най-малкото общо кратно чрез разлагане на дадените числа на прости множители.

Да предположим, че трябва да намерим LCM на числата: 99, 30 и 28. За да направим това, разлагаме всяко от тези числа на прости множители:

За да може желаното число да се дели на 99, 30 и 28, е необходимо и достатъчно то да включва всички прости множители на тези делители. За да направим това, трябва да вземем всички прости множители на тези числа на най-високата степен и да ги умножим заедно:

2 2 3 2 5 7 11 = 13 860

Така че LCM (99, 30, 28) = 13 860. Никое друго число, по-малко от 13 860, не се дели равномерно на 99, 30 или 28.

За да намерите най-малкото общо кратно на дадени числа, трябва да ги разделите на прости множители, след това да вземете всеки прост множител с най-големия показател, с който се среща, и да умножите тези множители заедно.

Тъй като взаимно простите числа нямат общи прости множители, тяхното най-малко общо кратно е равно на произведението на тези числа. Например три числа: 20, 49 и 33 са взаимно прости. Ето защо

LCM (20, 49, 33) = 20 49 33 = 32 340.

Същото трябва да се направи, когато се търси най-малкото общо кратно на различни прости числа. Например LCM (3, 7, 11) = 3 7 11 = 231.

Намиране чрез подбор

Вторият начин е да се намери най-малкото общо кратно чрез фитиране.

Пример 1. Когато най-голямото от дадените числа се дели равномерно на други дадени числа, тогава НОК на тези числа е равен на по-голямото от тях. Например дадени са четири числа: 60, 30, 10 и 6. Всяко от тях се дели на 60, следователно:

NOC(60, 30, 10, 6) = 60

В други случаи, за да се намери най-малкото общо кратно, се използва следната процедура:

  1. Определете най-голямото число от дадените числа.
  2. След това намерете кратните на най-голямото число, като го умножите по цели числавъв възходящ ред и проверка дали останалите дадени числа се делят на получения продукт.

Пример 2. Дадени са три числа 24, 3 и 18. Определя се най-голямото от тях - това е числото 24. След това се намират кратните на 24, като се проверява дали всяко от тях се дели на 18 и на 3:

24 1 = 24 се дели на 3, но не се дели на 18.

24 2 = 48 - дели се на 3, но не се дели на 18.

24 3 \u003d 72 - делимо на 3 и 18.

И така, LCM(24, 3, 18) = 72.

Намиране чрез последователно намиране LCM

Третият начин е да се намери най-малкото общо кратно чрез последователно намиране на LCM.

LCM на две дадени числа е равен на произведението на тези числа, делено на техния най-голям общ делител.

Пример 1. Намерете LCM на две дадени числа: 12 и 8. Определете техния най-голям общ делител: НОД (12, 8) = 4. Умножете тези числа:

Ние разделяме продукта на GCD:

Така че LCM(12, 8) = 24.

За да намерите LCM на три или повече числа, се използва следната процедура:

  1. Първо се намира LCM на всеки две от дадените числа.
  2. След това LCM на намереното най-малко общо кратно и третото дадено число.
  3. След това LCM на полученото най-малко общо кратно и четвъртото число и т.н.
  4. Така търсенето на LCM продължава, докато има числа.

Пример 2. Нека намерим НОК на три дадени числа: 12, 8 и 9. Вече намерихме НОК на числата 12 и 8 в предишния пример (това е числото 24). Остава да намерим най-малкото общо кратно на 24 и третото дадено число - 9. Определяме техния най-голям общ делител: gcd (24, 9) = 3. Умножаваме LCM с числото 9:

Ние разделяме продукта на GCD:

И така, LCM(12, 8, 9) = 72.

Нека продължим дискусията за най-малкото общо кратно, която започнахме в раздела LCM - Най-малко общо кратно, дефиниция, примери. В тази тема ще разгледаме начини за намиране на LCM за три или повече числа, ще анализираме въпроса как да намерим LCM на отрицателно число.

Yandex.RTB R-A-339285-1

Изчисляване на най-малкото общо кратно (LCM) чрез gcd

Вече установихме връзката между най-малкото общо кратно и най-големия общ делител. Сега нека научим как да дефинираме LCM чрез GCD. Първо, нека разберем как да направим това за положителни числа.

Определение 1

Можете да намерите най-малкото общо кратно чрез най-големия общ делител, като използвате формулата LCM (a, b) \u003d a b: НОД (a, b) .

Пример 1

Необходимо е да се намери LCM на числата 126 и 70.

Решение

Нека вземем a = 126 , b = 70 . Заменете стойностите във формулата за изчисляване на най-малкото общо кратно чрез най-големия общ делител LCM (a, b) = a · b: НОД (a, b) .

Намира НОД на числата 70 и 126. За това се нуждаем от алгоритъма на Евклид: 126 = 70 1 + 56 , 70 = 56 1 + 14 , 56 = 14 4 , следователно gcd (126 , 70) = 14 .

Нека изчислим LCM: LCM (126, 70) = 126 70: НОД (126, 70) = 126 70: 14 = 630.

Отговор: LCM (126, 70) = 630.

Пример 2

Намерете nok на числата 68 и 34.

Решение

GCD в този случай е лесно да се намери, тъй като 68 се дели на 34. Изчислете най-малкото общо кратно, като използвате формулата: LCM (68, 34) = 68 34: НОД (68, 34) = 68 34: 34 = 68.

Отговор: LCM(68, 34) = 68.

В този пример използвахме правилото за намиране на най-малкото общо кратно на положителни цели числа a и b: ако първото число се дели на второто, тогава LCM на тези числа ще бъде равно на първото число.

Намиране на LCM чрез разлагане на числа на прости множители

Сега нека разгледаме начин за намиране на LCM, който се основава на разлагането на числата на прости множители.

Определение 2

За да намерим най-малкото общо кратно, трябва да изпълним няколко прости стъпки:

  • съставяме произведението на всички прости множители на числа, за които трябва да намерим LCM;
  • ние изключваме всички прости множители от техните получени продукти;
  • произведението, получено след елиминиране на общите прости множители, ще бъде равно на LCM на дадените числа.

Този начин за намиране на най-малкото общо кратно се основава на равенството LCM (a , b) = a b: НОД (a , b) . Ако погледнете формулата, ще стане ясно: произведението на числата a и b е равно на произведението на всички фактори, които участват в разширяването на тези две числа. В този случай НОД на две числа е равен на произведението на всички прости множители, които присъстват едновременно в разложенията на тези две числа.

Пример 3

Имаме две числа 75 и 210. Можем да ги разделим по следния начин: 75 = 3 5 5и 210 = 2 3 5 7. Ако направите произведението на всички множители на двете оригинални числа, получавате: 2 3 3 5 5 5 7.

Ако изключим множителите, общи за числата 3 и 5, получаваме продукт от следната форма: 2 3 5 5 7 = 1050. Този продукт ще бъде нашият LCM за числата 75 и 210.

Пример 4

Намерете LCM на числата 441 и 700 , разлагайки двете числа на прости множители.

Решение

Нека намерим всички прости множители на числата, дадени в условието:

441 147 49 7 1 3 3 7 7

700 350 175 35 7 1 2 2 5 5 7

Получаваме две вериги от числа: 441 = 3 3 7 7 и 700 = 2 2 5 5 7 .

Продуктът на всички фактори, които са участвали в разширяването на тези числа, ще изглежда така: 2 2 3 3 5 5 7 7 7. Нека намерим общите множители. Това число е 7. Изключваме го от общия продукт: 2 2 3 3 5 5 7 7. Оказва се, че NOC (441 , 700) = 2 2 3 3 5 5 7 7 = 44 100.

Отговор: LCM (441 , 700) = 44 100 .

Нека дадем още една формулировка на метода за намиране на LCM чрез разлагане на числата на прости множители.

Определение 3

Преди това изключихме от общия брой фактори, общи за двете числа. Сега ще го направим по различен начин:

  • Нека разложим и двете числа на прости множители:
  • добавете към произведението на простите множители на първото число липсващите множители на второто число;
  • получаваме продукта, който ще бъде търсеният LCM от две числа.

Пример 5

Да се ​​върнем към числата 75 и 210, за които вече търсихме LCM в един от предишните примери. Нека ги разделим на прости фактори: 75 = 3 5 5и 210 = 2 3 5 7. Към произведението на множители 3 , 5 и 5 номер 75 добавете липсващите множители 2 и 7 числата 210 . Получаваме: 2 3 5 5 7 .Това е LCM на числата 75 и 210.

Пример 6

Необходимо е да се изчисли LCM на числата 84 и 648.

Решение

Нека разложим числата от условието на прости множители: 84 = 2 2 3 7и 648 = 2 2 2 3 3 3 3. Добавете към произведението на множителите 2 , 2 , 3 и 7 числа 84 липсващи множители 2 , 3 , 3 и
3 числата 648 . Получаваме продукта 2 2 2 3 3 3 3 7 = 4536 .Това е най-малкото общо кратно на 84 и 648.

Отговор: LCM (84, 648) = 4536.

Намиране на LCM на три или повече числа

Независимо с колко числа имаме работа, алгоритъмът на нашите действия винаги ще бъде един и същ: последователно ще намираме LCM на две числа. Има теорема за този случай.

Теорема 1

Да предположим, че имаме цели числа a 1 , a 2 , … , a k. НОК m kот тези числа се намира при последователно изчисление m 2 = LCM (a 1 , a 2) , m 3 = LCM (m 2 , a 3) , … , m k = LCM (m k − 1 , a k) .

Сега нека да разгледаме как теоремата може да се приложи към конкретни проблеми.

Пример 7

Трябва да изчислите най-малкото общо кратно на четирите числа 140 , 9 , 54 и 250 .

Решение

Нека въведем нотацията: a 1 = 140, a 2 = 9, a 3 = 54, a 4 = 250.

Нека започнем с изчисляването на m 2 = LCM (a 1 , a 2) = LCM (140 , 9) . Нека използваме евклидовия алгоритъм, за да изчислим НОД на числата 140 и 9: 140 = 9 15 + 5 , 9 = 5 1 + 4 , 5 = 4 1 + 1 , 4 = 1 4 . Получаваме: НОД(140, 9) = 1, НОК(140, 9) = 140 9: НОД(140, 9) = 140 9: 1 = 1260. Следователно m 2 = 1 260 .

Сега нека изчислим по същия алгоритъм m 3 = LCM (m 2 , a 3) = LCM (1 260 , 54) . В хода на изчисленията получаваме m 3 = 3 780.

Остава да изчислим m 4 \u003d LCM (m 3, a 4) \u003d LCM (3 780, 250) . Ние действаме по същия алгоритъм. Получаваме m 4 \u003d 94 500.

LCM на четирите числа от примерното условие е 94500.

Отговор: LCM (140, 9, 54, 250) = 94 500.

Както можете да видите, изчисленията са прости, но доста трудоемки. За да спестите време, можете да отидете по друг начин.

Определение 4

Предлагаме ви следния алгоритъм на действие:

  • разложи всички числа на прости множители;
  • към произведението на множителите на първото число добавете липсващите множители от произведението на второто число;
  • добавете липсващите фактори на третото число към продукта, получен на предишния етап и т.н.;
  • полученото произведение ще бъде най-малкото общо кратно на всички числа от условието.

Пример 8

Необходимо е да се намери НОК на пет числа 84, 6, 48, 7, 143.

Решение

Нека разложим всичките пет числа на прости множители: 84 = 2 2 3 7 , 6 = 2 3 , 48 = 2 2 2 2 3 , 7 , 143 = 11 13 . Простите числа, което е числото 7, не могат да бъдат разложени на прости множители. Такива числа съвпадат с тяхното разлагане на прости множители.

Сега нека вземем произведението на простите множители 2, 2, 3 и 7 на числото 84 и добавим към тях липсващите множители на второто число. Разложихме числото 6 на 2 и 3. Тези множители вече са в произведението на първото число. Затова ги пропускаме.

Продължаваме да добавяме липсващите множители. Обръщаме се към числото 48, от произведението на прости множители, на които вземаме 2 и 2. След това добавяме прост множител 7 от четвъртото число и множителите 11 и 13 от петото. Получаваме: 2 2 2 2 3 7 11 13 = 48 048. Това е най-малкото общо кратно на петте оригинални числа.

Отговор: LCM (84, 6, 48, 7, 143) = 48 048.

Намиране на най-малкото общо кратно на отрицателни числа

За да се намери най-малкото общо кратно на отрицателни числа, тези числа трябва първо да бъдат заменени с числа с противоположен знак и след това изчисленията да се извършат съгласно горните алгоритми.

Пример 9

LCM(54, −34) = LCM(54, 34) и LCM(−622,−46, −54,−888) = LCM(622, 46, 54, 888) .

Такива действия са допустими поради факта, че ако се приеме, че аи − а- противоположни числа
тогава множеството от кратни асъвпада с набора от кратни на число − а.

Пример 10

Необходимо е да се изчисли LCM на отрицателни числа − 145 и − 45 .

Решение

Нека сменим числата − 145 и − 45 към техните противоположни числа 145 и 45 . Сега, използвайки алгоритъма, изчисляваме НКТ (145 , 45) = 145 45: НОД (145 , 45) = 145 45: 5 = 1 305 , като преди това сме определили НОД с помощта на алгоритъма на Евклид.

Получаваме, че НОК на числата − 145 и − 45 се равнява 1 305 .

Отговор: LCM (− 145 , − 45) = 1 305 .

Ако забележите грешка в текста, моля, маркирайте я и натиснете Ctrl+Enter

LCM е най-малкото общо кратно. Число, на което всички дадени числа ще се делят без остатък.

Например, ако дадените числа са 2, 3, 5, тогава LCM=2*3*5=30

И ако дадените числа са 2,4,8, тогава LCM \u003d 8

какво е NOD?

НОД е най-големият общ делител. Числото, което може да се използва за разделяне на всяко от дадените числа без остатък.

Логично е, че ако дадените числа са прости, то НОД е равен на единица.

И ако са дадени числата 2, 4, 8, тогава НОД е 2.

Няма да го рисуваме в обща форма, а просто ще покажем решението с пример.

Дадени са две числа 126 и 44. Намерете НОД.

Тогава, ако са ни дадени две числа от формата

Тогава GCD се изчислява като

където min е минималната стойност на всички стойности на правомощията на pn

и НОК като

където max е максималната стойност на всички стойности на степените на числото pn

Разглеждайки горните формули, лесно може да се докаже, че НОД на две или повече числа ще бъде равен на единица, когато сред поне една двойка дадени стойности ще има взаимно прости числа.

Следователно е лесно да се отговори на въпроса какво е НОД на такива числа 3, 25412, 3251, 7841, 25654, 7, без да се изчислява нищо.

числата 3 и 7 са взаимно прости и следователно gcd=1

Помислете за пример.

Дадени са три числа 24654, 25473 и 954

Всяко число се разлага на следните фактори

Или, ако пишем в алтернативна форма

Тоест НОД на тези три числа е равен на три

Е, можем да изчислим LCM по подобен начин и той е равен на

Нашият бот ще ви помогне да изчислите GCD и LCM на всякакви цели числа, две, три или десет.


2022 г
seagun.ru - Направете таван. Осветление. Електрически инсталации. Корниз